-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtester.py
139 lines (125 loc) · 5.23 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#import time
import numpy as np
import h5py, cv2, os
def write_result_img(npy_path,img_path,
batch_size,size,num_channels=3):
result = np.load(npy_path)
print(result.shape)
# size = image size
result_img = np.empty((batch_size*size, 3*size, num_channels))
for i in range(batch_size):
result_img[i*size:(i+1)*size, 0*size:1*size] = result[0,i]
result_img[i*size:(i+1)*size, 1*size:2*size] = result[1,i]
result_img[i*size:(i+1)*size, 2*size:3*size] = result[2,i]
# convert correct image format
result_img = (result_img * 255).astype(np.uint8)
if num_channels != 1:
result_img = cv2.cvtColor(result_img,cv2.COLOR_BGR2RGB)
cv2.imwrite(img_path, result_img)
#TODO: load saved complnet and predict!
#TODO: create interactive demo!
if __name__ == "__main__":
bat_size = 64#64#32#96
img_size = 192#128
#write_result_img('./output/I_O_GT__999.npy',
#'./output/result999.png',bat_size,img_size)
#for i in range(40,180+20,20):
#for i in range(20,500,20):
paths = filter(lambda p: p[-3:] == 'npy',
map(lambda p: os.path.join('./output',p),
os.listdir('./output')))
#print(list(paths))
for path in paths:
ext_removed = os.path.splitext(path)[0]
write_result_img(path, ext_removed + '.png',
bat_size,img_size,1)
print(path)
'''
#unittest.main()
batch_size = 32
img_size = 192
maxl = img_size // 2
minl = img_size // 4
with h5py.File('./data128_half.h5','r') as data_file:
data_arr = data_file['images']
mean_pixel_value = data_file['mean_pixel_value'][()] / 255
for batch in gen_batch(data_arr, batch_size,
img_size, img_size // 2,
minl,maxl,mean_pixel_value):
origins, complnet_inputs, masked_origins, maskeds, ld_crop_yxhws = batch
lY,lX, lH,lW = ld_crop_yxhws[0]
#print('uwang good',ld_crop_yxhws)
cv2.imshow('img',origins[0]); cv2.waitKey(0)
#cv2.imshow('img2',origins[batch_size-1]); cv2.waitKey(0)
cv2.imshow('ab',masked_origins[0]); cv2.waitKey(0)
#cv2.imshow('ab2',masked_origins[batch_size-1]); cv2.waitKey(0)
cv2.imshow('complnet_inp',complnet_inputs[0]); cv2.waitKey(0)
#cv2.imshow('complnet_inp2',complnet_inputs[batch_size-1]); cv2.waitKey(0)
cv2.imshow('ld_crop',complnet_inputs[0][lY:lY+lH,lX:lX+lW]); cv2.waitKey(0)
#cv2.imshow('ld_crop2',complnet_inputs[batch_size-1][lY:lY+lH,lX:lX+lW]); cv2.waitKey(0)
write_result_img('./output/I_O_GT__180.npy',
'./output/result.png',bat_size,img_size,1)
write_result_img('./output/I_O_GT__160.npy',
'./output/result12.png',bat_size,img_size,1)
write_result_img('./output/I_O_GT__199.npy',
'./output/result199.png',bat_size,img_size,1)
'''
'''
'''
'''
# chunk_generator is for hdf5 file generation!!!!
def chunk_generator(np_array,chk_size):
length = len(np_array)
for beg_idx in range(0,length, chk_size):
yield np_array[beg_idx:beg_idx+chk_size]
def iter_mean(prev_mean,prev_size, now_sum,now_size):
total = prev_size + now_size
return prev_mean*prev_size/total + now_sum/total
import unittest
class Test_chunk_generator(unittest.TestCase):
def test_empty(self):
arr = list(chunk_generator([],100))
self.assertEqual(arr,[])
def test_array_size_is_divisible_by_chunk_size(self):
num_chks = 10
arr = []
for chunk in chunk_generator(np.ones(num_chks*10),
num_chks):
arr.append(chunk)
self.assertEqual(len(arr), num_chks)
def test_array_size_is_not_divisible_by_chunk_size(self):
num_chks = 10
chk_size = 9
remainder_size = 2
length = remainder_size + num_chks*chk_size
src_arr = [1] * (remainder_size + num_chks*chk_size)
dst_arr = [0] * (remainder_size + num_chks*chk_size)
arr = []
for idx,chunk in enumerate(chunk_generator(src_arr,
chk_size)):
beg_idx = idx*chk_size
dst_arr[beg_idx:beg_idx+chk_size] = chunk
arr.append(chunk)
self.assertEqual(len(dst_arr), length)
#self.assertEqual(len(dst_arr[-1]), remainder_size)
print(dst_arr)
print(len(dst_arr))
print(arr)
#@unittest.skip('later')
def test_chunks_indexing(self):
chk_size = 100
num_chks = 10
remainder_size = 42
length = num_chks*chk_size + remainder_size
src_arr = np.ones(length)
dst_arr = np.empty(length)
for idx,chunk in enumerate(chunk_generator(src_arr,
chk_size)):
now_chk_size = chunk.shape[0] # it would be smaller than chk_size!
print(now_chk_size)
beg_idx = idx*chk_size
dst_arr[beg_idx:beg_idx+now_chk_size] = chunk
self.assertEqual(dst_arr.shape[0], length)
#self.assertEqual(arr[-1].shape[0], remainder_size)
print(dst_arr)
'''