-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathosimab_ace_jo_custom.py
422 lines (348 loc) · 13.1 KB
/
osimab_ace_jo_custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import numpy as np
import time
import yaml
from box import Box
import logging
import copy
from src.datasets import OSIMABDataset
from src.datasets import OSIMABDatasetSmall
from src.datasets import OSIMABDatasetSmall_6Sensors
from src.datasets import OSIMABDatasetSmall_South
from src.datasets import SWaTDatasets
from src.datasets import WADIDatasets
from src.datasets import BATADALDatasets
from src.evaluation import Evaluator
from src.algorithms import AutoEncoder
from src.algorithms import LSTMEDP
from src.algorithms import LSTMED
from src.algorithms import ACE
from src.algorithms import AutoCorrelationEncoder
from src.evaluation.config import init_logging
from src.utils import (
detectors,
load_different_sensor_models,
load_same_sensor_models,
load_sensor_models,
clean_trainsets_by_whitelist,
getIntersectedSensors,
)
from config import config
from functools import reduce
import pathos.multiprocessing as mp
import random
import pandas as pd
import gc
import glob
import sys
import os
from pprint import pprint
def main():
cfgs = get_configs()
for cfg in cfgs:
evaluators = evaluate_osimab_jo(cfg)
def evaluate_osimab_jo(cfg):
seed = np.random.randint(1000)
# Load data
output_dir, logger = get_logger(cfg)
if cfg.osimab_crossval == True:
evaluators = eval_osimab_crossval(seed, cfg, output_dir)
return evaluators
# train and/or get models
model_types = cfg.models
models = []
if "train" in cfg.modeFlg:
models.extend(train_models(seed, cfg, output_dir, logger))
for model_type in model_types:
if model_type in cfg.model and cfg.model[model_type].load_file is not None:
if cfg.model[model_type].same_sensor_model == True:
models.extend(load_same_sensor_models(cfg, seed))
else:
models.extend(load_different_sensor_models(cfg, seed))
evaluators = []
if "test" in cfg.modeFlg:
evaluators.append(test_models(seed, cfg, output_dir, models))
def eval_osimab_crossval(seed, cfg, output_dir):
datasets_tot = get_datasets_train_osimab_small(cfg)
intersected_sensors = getIntersectedSensors(cfg, datasets_tot)
# get arguments
arg_list = []
for dataset_test_ind in range(len(datasets_tot)):
dataset_test = datasets_tot[dataset_test_ind]
datasets_train = (
datasets_tot[:dataset_test_ind] + datasets_tot[dataset_test_ind + 1 :]
)
arg_list.append((cfg, seed, datasets_train, dataset_test, output_dir))
# process parallel
results = []
evaluators = []
pool = mp.Pool(int(mp.cpu_count()))
for arguments in arg_list:
results.append(pool.apply_async(cross_val_async, args=arguments))
pool.close()
pool.join()
for result in results:
evaluators.append(result.get())
return evaluators
def train_models(seed, cfg, output_dir, logger):
models = []
datasets_train = get_datasets_train(cfg)
intersected_sensors = getIntersectedSensors(cfg, datasets_train)
logger.info(
f"""
Training on sensors {intersected_sensors} with datasets
given by {datasets_train}"""
)
model_name = cfg.models[0] + "_" + cfg.dataset_type[0]
models.extend(
add_train_models(
cfg,
datasets_train,
seed,
output_dir,
intersected_sensors,
logger=logger,
name=model_name,
)
)
return models
def test_models(seed, cfg, output_dir, models):
if len(models) == 0:
raise Exception("No models were specified (neither trained nor loaded)")
if "osimabSmall" in cfg.dataset_type:
datasets_test = get_datasets_test_osimab_small(cfg)
elif "osimabSmall_6Sensors" in cfg.dataset_type:
datasets_test = get_datasets_test_osimab_small_6Sensors(cfg)
elif "osimabSmall_South" in cfg.dataset_type:
datasets_test = get_datasets_test_osimab_small_South(cfg)
elif "SWaT" in cfg.dataset_type:
datasets_test = get_datasets_test_swat(cfg)
elif "WADI" in cfg.dataset_type:
datasets_test = get_datasets_test_wadi(cfg)
elif "BATADAL" in cfg.dataset_type:
datasets_test = get_datasets_test_batadal(cfg)
else:
datasets_test = get_datasets_test(cfg)
evaluator_res = predict_testsets(datasets_test, models, output_dir, seed, cfg)
return evaluator_res
def cross_val_async(cfg, seed, datasets_train, dataset_test, output_dir):
models = []
if "train" in cfg.modeFlg:
intersected_sensors = getIntersectedSensors(cfg, datasets_train)
name = cfg.model.type[0] + "_" + str(dataset_test)[-6:-4]
models.extend(
add_train_models(
cfg, datasets_train, seed, output_dir, intersected_sensors, name=name
)
)
if cfg.model.load_file is not None:
models.extend(load_same_sensor_models(cfg, seed))
if "test" in cfg.modeFlg:
evaluator_res = test_cross_val_async(
seed, cfg, output_dir, models, dataset_test
)
return evaluator_res
return None
def test_cross_val_async(seed, cfg, output_dir, models, dataset_test):
if len(models) == 0:
raise Exception("No models were specified (neither trained nor loaded)")
datasets_test = [dataset_test]
# choose right model
for model in models:
if model.name[-2:] in dataset_test.name[-7:]:
right_model = model
models = [right_model]
evaluator_res = predict_testsets(datasets_test, models, output_dir, seed, cfg)
return evaluator_res
def get_configs():
cfgs = []
if sys.argv[1] == "configs/configlist.txt":
with open(
os.path.join(os.getcwd(), "configs/configlist.txt"), "r"
) as configlist:
for line in configlist.readlines():
print(line.strip())
cfg_box = Box(config(external_path=line.strip()).config_dict)
cfgs.append(cfg_box)
else:
for cfg in sys.argv[1:]:
cfg_box = Box(config(external_path=cfg).config_dict)
cfgs.append(cfg_box)
return cfgs
def get_logger(cfg):
timestamp = time.strftime("%Y-%m-%d-%H%M%S")
run_dir = timestamp + "_" + cfg.ctx + "_train"
output_dir = os.path.join("reports", run_dir)
init_logging(os.path.join(output_dir, "logs"))
logger = logging.getLogger(__name__)
return output_dir, logger
def get_datasets_train(cfg):
train_datasets_type = cfg.dataset_type
if "osimabSmall" in cfg.dataset_type:
return get_datasets_train_osimab_small(cfg)
if "osimabSmall_6Sensors" in cfg.dataset_type:
return get_datasets_train_osimab_small_6Sensors(cfg)
if "osimabSmall_South" in cfg.dataset_type:
return get_datasets_train_osimab_small_South(cfg)
if "osimabLarge" in cfg.dataset_type:
return get_datasets_train_osimab_large(cfg)
if "SWaT" in cfg.dataset_type:
return get_datasets_train_swat(cfg)
if "WADI" in cfg.dataset_type:
return get_datasets_train_wadi(cfg)
if "BATADAL" in cfg.dataset_type:
return get_datasets_train_batadal(cfg)
def get_datasets_train_osimab_large(cfg):
if cfg.dataset.osimabLarge.regexp_bin_train == None:
raise Exception("You specified to train yet provided no regexp dataset")
datasets_train = []
pathnames_train = []
for regexp_bin in cfg.dataset.osimabLarge.regexp_bin_train:
pathnamesRegExp = os.path.join(cfg.dataset.osimabLarge.data_dir, regexp_bin)
pathnames_train += glob.glob(pathnamesRegExp)
filenames_train = [os.path.basename(pathname) for pathname in pathnames_train]
datasets_train = [
OSIMABDataset(cfg, file_name=filename) for filename in pathnames_train
]
datasets_train = clear_trainsets_by_whitelist(datasets_train)
print("Used binfiles for training:")
pprint(filenames_train)
return datasets_train
def get_datasets_train_osimab_small(cfg):
osimabDatasetSmall = OSIMABDatasetSmall(cfg)
datasets_train = osimabDatasetSmall.datasets
return datasets_train
def get_datasets_train_osimab_small_6Sensors(cfg):
osimabDatasetSmall = OSIMABDatasetSmall_6Sensors(cfg)
datasets_train = osimabDatasetSmall.datasets
return datasets_train
def get_datasets_train_osimab_small_South(cfg):
osimabDatasetSmall = OSIMABDatasetSmall_South(cfg)
datasets_train = osimabDatasetSmall.datasets
return datasets_train
def get_datasets_train_swat(cfg):
swatDataset = SWaTDatasets(cfg)
datasets_train = swatDataset.datasets
return datasets_train
def get_datasets_train_wadi(cfg):
swatDataset = WADIDatasets(cfg)
datasets_train = swatDataset.datasets
return datasets_train
def get_datasets_train_batadal(cfg):
swatDataset = BATADALDatasets(cfg)
datasets_train = swatDataset.datasets
return datasets_train
def get_datasets_test_by_day(cfg):
datasets_test = []
pathnames_test = []
for regexp_bin in cfg.dataset.osimabLarge.regexp_bin_test:
pathnamesRegExp = os.path.join(cfg.dataset.osimabLarge.data_dir, regexp_bin)
pathnames_test += glob.glob(pathnamesRegExp)
filenames_test = [os.path.basename(pathname) for pathname in pathnames_test]
all_days = list(set(map(lambda x: x[:17], filenames_test)))
test_days = []
output_dirs = []
for predictionDate in all_days:
if predictionDate not in os.listdir(
os.path.join(os.getcwd(), "results", "PredictionResults")
):
output_dir = os.path.join(
os.getcwd(), "results", "PredictionResults", predictionDate
)
output_dirs.append(output_dir)
os.mkdir(output_dir)
test_days.append(
[
OSIMABDataset(cfg, file_name=filename)
for filename in pathnames_test
if predictionDate in filename
]
)
return output_dirs, test_days
def get_datasets_test(cfg):
pathnames_test = []
for regexp_bin in cfg.dataset.osimabLarge.regexp_bin_test:
pathnamesRegExp = os.path.join(cfg.dataset.osimabLarge.data_dir, regexp_bin)
pathnames_test += glob.glob(pathnamesRegExp)
filenames_test = [os.path.basename(pathname) for pathname in pathnames_test]
datasets_test = [
OSIMABDataset(cfg, file_name=filename) for filename in pathnames_test
]
print("used binfiles for testing:")
pprint(filenames_test)
return datasets_test
def get_datasets_test_osimab_small(cfg):
osimabDatasetSmall = OSIMABDatasetSmall(cfg)
datasets_test = osimabDatasetSmall.datasets
return datasets_test
def get_datasets_test_osimab_small_6Sensors(cfg):
osimabDatasetSmall = OSIMABDatasetSmall_6Sensors(cfg)
datasets_test = osimabDatasetSmall.datasets
return datasets_test
def get_datasets_test_osimab_small_South(cfg):
osimabDatasetSmall = OSIMABDatasetSmall_South(cfg)
datasets_test = osimabDatasetSmall.datasets
return datasets_test
def get_datasets_test_swat(cfg):
swatDataset = SWaTDatasets(cfg)
datasets_test = swatDataset.datasets
return datasets_test
def get_datasets_test_wadi(cfg):
swatDataset = WADIDatasets(cfg)
datasets_test = swatDataset.datasets
return datasets_test
def get_datasets_test_batadal(cfg):
swatDataset = BATADALDatasets(cfg)
datasets_test = swatDataset.datasets
return datasets_test
def add_train_models(
cfg, datasets_train, seed, output_dir, intersected_sensors, name=None, logger=None
):
models = []
models.append(detectors(seed, cfg, name)[0])
while len(datasets_train) != 0:
# for dataset_train in datasets_train:
if logger is not None:
logger.info(
f"Training {models[-1].name} on {datasets_train[0].name} with seed {seed}"
)
X_train = datasets_train[0].data(sensor_list=intersected_sensors)[0]
models[-1].fit(X_train)
datasets_train[0]._data = None
gc.collect()
datasets_train.pop(0)
for model in models:
model_dir = os.path.join(output_dir, f"model_{model.name}")
os.makedirs(model_dir, exist_ok=True)
model.save(model_dir)
model.save_train_time(model_dir)
model.save_num_params(model_dir)
return models
def predict_test_days(test_days, dets, output_dirs, seed, cfg):
for testDayCounter in range(len(test_days)):
if "output_dirs" in locals():
evaluator = Evaluator(
test_days[testDayCounter],
dets,
seed=seed,
cfg=cfg,
output_dir=output_dirs[testDayCounter],
create_log_file=cfg.log_file,
)
else:
raise Exception("You should specify an output folder")
evaluator.evaluate()
evaluator.plot_roc_curves()
def predict_testsets(datasets_test, dets, output_dir, seed, cfg):
evaluator = Evaluator(
datasets_test,
dets,
seed=seed,
cfg=cfg,
output_dir=output_dir,
create_log_file=cfg.log_file,
)
evaluator.evaluate()
evaluator.plot_roc_curves()
return evaluator
if __name__ == "__main__":
main()