-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbenchmark_train.py
141 lines (111 loc) · 5.66 KB
/
benchmark_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from time import perf_counter
import hydra
import torch
import torch.optim as th_op
from dgl.data import GINDataset
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from CGS.gnn.CGS.get_model import get_graphtask_model
from CGS.utils.data import GINDataLoader
from CGS.utils.test_utils import print_perf, set_seed
def eval_model(config, model, dataloader, criterion):
model.eval()
total = 0
total_loss = 0
total_correct = 0
for data in dataloader:
graphs, labels = data
graphs = graphs.to(config.train.device)
labels = labels.to(config.train.device)
nf = graphs.ndata['attr'].float()
ef = torch.zeros(graphs.num_edges(), 1).float().to(config.train.device)
total += len(labels)
with torch.no_grad():
outputs = model(graphs, nf, ef)
_, predicted = torch.max(outputs.data, 1)
total_correct += (predicted == labels.data).sum().item()
loss = criterion(outputs, labels)
total_loss += loss.item() * len(labels)
loss, acc = 1.0 * total_loss / total, 1.0 * total_correct / total
model.train()
return loss, acc
@hydra.main(config_path="./CGS/configs/benchmark", config_name='cgs')
def main(config=None):
use_cuda = True if 'cuda' in config.train.device else False
set_seed(config.train.seed, use_cuda)
device = config.train.device
# load data
dataset = GINDataset(name=config.exp.dataset,
self_loop=config.train.self_loop,
degree_as_nlabel=config.train.degree_as_nlabel)
train_loader, val_loader = GINDataLoader(dataset,
batch_size=config.train.bs,
device=torch.device(config.train.device),
seed=config.train.seed,
shuffle=True,
split_name='fold10',
fold_idx=config.exp.fold_idx).train_valid_loader()
config.model.nf_dim = dataset.dim_nfeats # assigning input node dimension
config.model.sol_dim = dataset.gclasses # assigning solution dimension
model = get_graphtask_model(num_heads=config.model.num_heads,
gamma=config.model.gamma,
num_hidden_gn=config.model.num_hidden_gn,
nf_dim=config.model.nf_dim,
ef_dim=config.model.ef_dim,
sol_dim=config.model.sol_dim,
n_hidden_dim=config.model.n_hidden_dim,
e_hidden_dim=config.model.e_hidden_dim,
non_linear=config.model.non_linear,
node_readout=config.model.node_readout,
node_aggregator=config.model.node_aggregator,
mlp_num_neurons=config.model.mlp_num_neurons,
reg_dp=config.model.reg_dp,
reg_num_neurons=config.model.reg_num_neurons,
activation=config.model.activation).to(device)
opt = getattr(th_op, config.opt.name)(model.parameters(), lr=config.opt.lr)
scheduler = CosineAnnealingWarmRestarts(opt, T_0=32)
loss_fn = torch.nn.CrossEntropyLoss()
max_train_acc, max_val_acc = 0.0, 0.0
iters = len(train_loader)
for ep in range(config.train.epochs):
for i, (train_g, train_label) in enumerate(train_loader):
train_g = train_g.to(device)
train_label = train_label.to(device)
start = perf_counter()
train_nf = train_g.ndata['attr'].float()
train_ef = torch.zeros(train_g.num_edges(), 1).float().to(device)
train_pred = model(train_g, train_nf, train_ef)
loss = loss_fn(train_pred, train_label)
opt.zero_grad()
loss.backward()
opt.step()
scheduler.step(ep + i / iters)
fit_time = perf_counter() - start
# logging
log_dict = {'iter': i,
'train_loss': loss,
'fit_time': fit_time,
'forward_itr': model.fp_layer.frd_itr,
'lr': opt.param_groups[0]['lr']}
# evaluate model
if i % config.train.eval_every == 0:
with torch.no_grad():
train_loss, train_acc = eval_model(config, model, train_loader, loss_fn)
val_loss, val_acc = eval_model(config, model, val_loader, loss_fn)
# report the validation score per gradient steps
# Seems like the most standard evaluation scheme.
# GIN paper/implementation, GraphNorm implementation, LP-GNN paper
log_dict['train_loss'] = train_loss
log_dict['train_acc'] = train_acc
log_dict['val_loss'] = val_loss
log_dict['val_acc'] = val_acc
log_dict['epoch'] = ep
# report the max. validation score over the training steps
# IGNN evaluation scheme
# Line 153 of https://github.com/SwiftieH/IGNN/blob/main/graphclassification/train_IGNN.py
max_train_acc = train_acc if train_acc >= max_train_acc else max_train_acc
max_val_acc = val_acc if val_acc >= max_val_acc else max_val_acc
log_dict['max_train_acc'] = max_train_acc
log_dict['max_val_acc'] = max_val_acc
print_perf(log_dict)
if __name__ == '__main__':
main()