diff --git a/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_dingemans.jl b/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_dingemans.jl index 3949dbb4..886167f8 100644 --- a/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_dingemans.jl +++ b/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_dingemans.jl @@ -4,7 +4,7 @@ using DispersiveShallowWater ############################################################################### # Semidiscretization of the BBM-BBM equations -equations = BBMBBMVariableEquations1D(gravity_constant = 9.81, eta0 = 0.8) +equations = BBMBBMVariableEquations1D(gravity_constant = 9.81) initial_condition = initial_condition_dingemans boundary_conditions = boundary_condition_periodic diff --git a/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_well_balanced.jl b/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_well_balanced.jl index ad1e1666..ab640e15 100644 --- a/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_well_balanced.jl +++ b/examples/bbm_bbm_variable_bathymetry_1d/bbm_bbm_variable_bathymetry_1d_well_balanced.jl @@ -6,7 +6,7 @@ using SparseArrays: sparse ############################################################################### # Semidiscretization of the BBM-BBM equations -equations = BBMBBMVariableEquations1D(gravity_constant = 1.0, eta0 = 2.0) +equations = BBMBBMVariableEquations1D(gravity_constant = 1.0) # Setup a truly discontinuous bottom topography function for this academic # testcase of well-balancedness. The errors from the analysis callback are @@ -18,11 +18,11 @@ function initial_condition_discontinuous_well_balancedness(x, t, # Set the background values eta = equations.eta0 v = 0.0 - D = -1.0 + D = equations.eta0 - 1.0 # Setup a discontinuous bottom topography if x >= 0.5 && x <= 0.75 - D = -1.5 - 0.5 * sinpi(2.0 * x) + D = equations.eta0 - 1.5 - 0.5 * sinpi(2.0 * x) end return SVector(eta, v, D) diff --git a/examples/svaerd_kalisch_1d/svaerd_kalisch_1d_well_balanced.jl b/examples/svaerd_kalisch_1d/svaerd_kalisch_1d_well_balanced.jl index 759713f0..9f0403fd 100644 --- a/examples/svaerd_kalisch_1d/svaerd_kalisch_1d_well_balanced.jl +++ b/examples/svaerd_kalisch_1d/svaerd_kalisch_1d_well_balanced.jl @@ -19,11 +19,11 @@ function initial_condition_discontinuous_well_balancedness(x, t, # Set the background values eta = equations.eta0 v = 0.0 - D = -1.0 + D = equations.eta0 - 1.0 # Setup a discontinuous bottom topography if x >= 0.5 && x <= 0.75 - D = -1.5 - 0.5 * sinpi(2.0 * x) + D = equations.eta0 - 1.5 - 0.5 * sinpi(2.0 * x) end return SVector(eta, v, D) diff --git a/src/equations/bbm_bbm_1d.jl b/src/equations/bbm_bbm_1d.jl index 3dc986e6..3e476957 100644 --- a/src/equations/bbm_bbm_1d.jl +++ b/src/equations/bbm_bbm_1d.jl @@ -1,5 +1,5 @@ @doc raw""" - BBMBBMEquations1D(gravity, D) + BBMBBMEquations1D(gravity, D, eta0 = 0.0) BBM-BBM (Benjamin–Bona–Mahony) system in one spatial dimension. The equations are given by ```math @@ -9,8 +9,8 @@ BBM-BBM (Benjamin–Bona–Mahony) system in one spatial dimension. The equation \end{aligned} ``` The unknown quantities of the BBM-BBM equations are the total water height ``\eta`` and the velocity ``v``. -The gravitational constant is denoted by `g` and the constant bottom topography (bathymetry) ``b = -D``. The water height above the bathymetry is therefore given by -``h = \eta + D``. +The gravitational constant is denoted by `g` and the constant bottom topography (bathymetry) ``b = \eta_0 - D``. The water height above the bathymetry is therefore given by +``h = \eta - \eta_0 + D``. The BBM-BBM equations are only implemented for ``\eta_0 = 0``. One reference for the BBM-BBM system can be found in - Jerry L. Bona, Min Chen (1998) @@ -21,10 +21,12 @@ One reference for the BBM-BBM system can be found in struct BBMBBMEquations1D{RealT <: Real} <: AbstractBBMBBMEquations{1, 2} gravity::RealT # gravitational constant D::RealT # constant bathymetry + eta0::RealT # constant still-water surface end -function BBMBBMEquations1D(; gravity_constant, D = 1.0) - BBMBBMEquations1D(gravity_constant, D) +function BBMBBMEquations1D(; gravity_constant, D = 1.0, eta0 = 0.0) + eta0 == 0.0 || @warn "The still-water surface needs to be 0 for the BBM-BBM equations" + BBMBBMEquations1D(gravity_constant, D, eta0) end varnames(::typeof(prim2prim), ::BBMBBMEquations1D) = ("η", "v") @@ -94,11 +96,12 @@ function create_cache(mesh, initial_condition, RealT, uEltype) + D = equations.D if solver.D1 isa PeriodicDerivativeOperator || solver.D1 isa UniformPeriodicCoupledOperator - invImD2 = inv(I - 1 / 6 * equations.D^2 * Matrix(solver.D2)) + invImD2 = inv(I - 1 / 6 * D^2 * Matrix(solver.D2)) elseif solver.D1 isa PeriodicUpwindOperators - invImD2 = inv(I - 1 / 6 * equations.D^2 * Matrix(solver.D2)) + invImD2 = inv(I - 1 / 6 * D^2 * Matrix(solver.D2)) else @error "unknown type of first-derivative operator" end @@ -122,15 +125,15 @@ function rhs!(du_ode, u_ode, t, mesh, equations::BBMBBMEquations1D, initial_cond deta = view(dq, 1, :) dv = view(dq, 2, :) + D = equations.D # energy and mass conservative semidiscretization if solver.D1 isa PeriodicDerivativeOperator || solver.D1 isa UniformPeriodicCoupledOperator - @timeit timer() "deta hyperbolic" deta[:]=-solver.D1 * (equations.D * v + eta .* v) + @timeit timer() "deta hyperbolic" deta[:]=-solver.D1 * (D * v + eta .* v) @timeit timer() "dv hyperbolic" dv[:]=-solver.D1 * (equations.gravity * eta + 0.5 * v .^ 2) elseif solver.D1 isa PeriodicUpwindOperators - @timeit timer() "deta hyperbolic" deta[:]=-solver.D1.central * - (equations.D * v + eta .* v) + @timeit timer() "deta hyperbolic" deta[:]=-solver.D1.central * (D * v + eta .* v) @timeit timer() "dv hyperbolic" dv[:]=-solver.D1.central * (equations.gravity * eta + 0.5 * v .^ 2) else @@ -148,7 +151,7 @@ end @inline function prim2cons(q, equations::BBMBBMEquations1D) eta, v = q - h = eta + equations.D + h = eta - equations.eta0 + equations.D hv = h * v return SVector(h, hv) end @@ -156,7 +159,7 @@ end @inline function cons2prim(u, equations::BBMBBMEquations1D) h, hv = u - eta = h - equations.D + eta = h + equations.eta0 - equations.D v = hv / h return SVector(eta, v) end @@ -170,7 +173,7 @@ end end @inline function bathymetry(q, equations::BBMBBMEquations1D) - return -equations.D + return equations.eta0 - equations.D end @inline function waterheight(q, equations::BBMBBMEquations1D) @@ -179,7 +182,8 @@ end @inline function energy_total(q, equations::BBMBBMEquations1D) eta, v = q - e = 0.5 * (equations.gravity * eta^2 + (equations.D + eta) * v^2) + D = still_waterdepth(q, equations) + e = 0.5 * (equations.gravity * eta^2 + (D + eta - equations.eta0) * v^2) return e end diff --git a/src/equations/bbm_bbm_variable_bathymetry_1d.jl b/src/equations/bbm_bbm_variable_bathymetry_1d.jl index bc8525ef..729d24e0 100644 --- a/src/equations/bbm_bbm_variable_bathymetry_1d.jl +++ b/src/equations/bbm_bbm_variable_bathymetry_1d.jl @@ -9,8 +9,8 @@ BBM-BBM (Benjamin–Bona–Mahony) system in one spatial dimension with spatiall \end{aligned} ``` The unknown quantities of the BBM-BBM equations are the total water height ``\eta`` and the velocity ``v``. -The gravitational constant is denoted by `g` and the bottom topography (bathymetry) ``b = -D``. The water height above the bathymetry is therefore given by -``h = \eta + D``. +The gravitational constant is denoted by `g` and the bottom topography (bathymetry) ``b = \eta_0 - D``. The water height above the bathymetry is therefore given by +``h = \eta - \eta_0 + D``. The BBM-BBM equations are only implemented for ``\eta_0 = 0``. One reference for the BBM-BBM system with spatially varying bathymetry can be found in - Samer Israwi, Henrik Kalisch, Theodoros Katsaounis, Dimitrios Mitsotakis (2022) @@ -20,10 +20,11 @@ One reference for the BBM-BBM system with spatially varying bathymetry can be fo """ struct BBMBBMVariableEquations1D{RealT <: Real} <: AbstractBBMBBMEquations{1, 3} gravity::RealT # gravitational constant - eta0::RealT # constant "lake-at-rest" total water height + eta0::RealT # constant still-water surface end -function BBMBBMVariableEquations1D(; gravity_constant, eta0 = 1.0) +function BBMBBMVariableEquations1D(; gravity_constant, eta0 = 0.0) + eta0 == 0.0 || @warn "The still-water surface needs to be 0 for the BBM-BBM equations" BBMBBMVariableEquations1D(gravity_constant, eta0) end @@ -107,6 +108,11 @@ The initial condition that uses the dispersion relation of the Euler equations to approximate waves generated by a wave maker as it is done by experiments of Dingemans. The topography is a trapezoidal. +!!! warning "Translation of water height" + The initial condition for the water height is translated to be around 0, which is + needed for the simulation because the `BBMBBMVariableEquations1D` are only implemented + for ``\eta_0 = 0``. + References: - Magnus Svärd, Henrik Kalisch (2023) A novel energy-bounded Boussinesq model and a well-balanced and stable numerical discretization @@ -116,16 +122,16 @@ References: [link](https://repository.tudelft.nl/islandora/object/uuid:c2091d53-f455-48af-a84b-ac86680455e9/datastream/OBJ/download) """ function initial_condition_dingemans(x, t, equations::BBMBBMVariableEquations1D, mesh) - eta0 = 0.8 + h0 = 0.8 A = 0.02 # omega = 2*pi/(2.02*sqrt(2)) - k = 0.8406220896381442 # precomputed result of find_zero(k -> omega^2 - equations.gravity * k * tanh(k * eta0), 1.0) using Roots.jl + k = 0.8406220896381442 # precomputed result of find_zero(k -> omega^2 - equations.gravity * k * tanh(k * h0), 1.0) using Roots.jl if x < -30.5 * pi / k || x > -8.5 * pi / k h = 0.0 else h = A * cos(k * x) end - v = sqrt(equations.gravity / k * tanh(k * eta0)) * h / eta0 + v = sqrt(equations.gravity / k * tanh(k * h0)) * h / h0 if 11.01 <= x && x < 23.04 b = 0.6 * (x - 11.01) / (23.04 - 11.01) elseif 23.04 <= x && x < 27.04 @@ -135,8 +141,10 @@ function initial_condition_dingemans(x, t, equations::BBMBBMVariableEquations1D, else b = 0.0 end - eta = h + eta0 - D = -b + # Here, we compute eta - h0!! To obtain the original eta, h0 = 0.8 needs to be added again! + # This is because the BBM-BBM equations are only implemented for eta0 = 0 + eta = h + D = h0 - b return SVector(eta, v, D) end @@ -150,7 +158,7 @@ function create_cache(mesh, D = Array{RealT}(undef, nnodes(mesh)) x = grid(solver) for i in eachnode(solver) - D[i] = initial_condition(x[i], 0.0, equations, mesh)[3] + D[i] = still_waterdepth(initial_condition(x[i], 0.0, equations, mesh), equations) end K = Diagonal(D .^ 2) if solver.D1 isa PeriodicDerivativeOperator || @@ -164,7 +172,7 @@ function create_cache(mesh, @error "unknown type of first-derivative operator" end tmp1 = Array{RealT}(undef, nnodes(mesh)) # tmp1 is needed for the `RelaxationCallback` - return (invImDKD = invImDKD, invImD2K = invImD2K, tmp1 = tmp1) + return (invImDKD = invImDKD, invImD2K = invImD2K, D = D, tmp1 = tmp1) end # Discretization that conserves the mass (for eta and v) and the energy for periodic boundary conditions, see @@ -175,14 +183,13 @@ end function rhs!(du_ode, u_ode, t, mesh, equations::BBMBBMVariableEquations1D, initial_condition, ::BoundaryConditionPeriodic, source_terms, solver, cache) - @unpack invImDKD, invImD2K = cache + @unpack invImDKD, invImD2K, D = cache q = wrap_array(u_ode, mesh, equations, solver) dq = wrap_array(du_ode, mesh, equations, solver) eta = view(q, 1, :) v = view(q, 2, :) - D = view(q, 3, :) deta = view(dq, 1, :) dv = view(dq, 2, :) dD = view(dq, 3, :) @@ -212,9 +219,9 @@ end @inline function prim2cons(q, equations::BBMBBMVariableEquations1D) eta, v, D = q - h = eta + D + b = bathymetry(q, equations) + h = eta - b hv = h * v - b = -D return SVector(h, hv, b) end @@ -223,7 +230,7 @@ end eta = h + b v = hv / h - D = -b + D = equations.eta0 - b return SVector(eta, v, D) end @@ -236,7 +243,8 @@ end end @inline function bathymetry(q, equations::BBMBBMVariableEquations1D) - return -q[3] + D = q[3] + return equations.eta0 - D end @inline function waterheight(q, equations::BBMBBMVariableEquations1D) @@ -245,7 +253,7 @@ end @inline function energy_total(q, equations::BBMBBMVariableEquations1D) eta, v, D = q - e = 0.5 * (equations.gravity * eta^2 + (D + eta) * v^2) + e = 0.5 * (equations.gravity * eta^2 + (D + eta - equations.eta0) * v^2) return e end diff --git a/src/equations/equations.jl b/src/equations/equations.jl index ba3d02b3..ba828f92 100644 --- a/src/equations/equations.jl +++ b/src/equations/equations.jl @@ -133,6 +133,12 @@ See [`momentum`](@ref). varnames(::typeof(discharge), equations) = ("P",) +@inline function still_waterdepth(q, equations::AbstractEquations) + b = bathymetry(q, equations) + D = equations.eta0 - b + return D +end + """ entropy(q, equations) diff --git a/src/equations/svaerd_kalisch_1d.jl b/src/equations/svaerd_kalisch_1d.jl index f537ab13..00e33777 100644 --- a/src/equations/svaerd_kalisch_1d.jl +++ b/src/equations/svaerd_kalisch_1d.jl @@ -8,7 +8,7 @@ Dispersive system by Svärd and Kalisch in one spatial dimension with spatially (hv)_t + (hv^2)_x + gh(h + b)_x &= (\hat\alpha v(\hat\alpha(h + b)_x)_x)_x + (\hat\beta v_x)_{xt} + \frac{1}{2}(\hat\gamma v_x)_{xx} + \frac{1}{2}(\hat\gamma v_{xx})_x, \end{aligned} ``` -where ``\hat\alpha^2 = \alpha\sqrt{gd}d^2``, ``\hat\beta = \beta d^3``, ``\hat\gamma = \gamma\sqrt{gd}d^3``. The coefficients ``\alpha``, ``\beta`` and ``\gamma`` are provided in dimensionless form and ``d = \eta_0 - b`` is the still-water depth and `eta0` is the still-water surface (lake-at-rest). +where ``\hat\alpha^2 = \alpha\sqrt{gD}D^2``, ``\hat\beta = \beta D^3``, ``\hat\gamma = \gamma\sqrt{gD}D^3``. The coefficients ``\alpha``, ``\beta`` and ``\gamma`` are provided in dimensionless form and ``D = \eta_0 - b`` is the still-water depth and `eta0` is the still-water surface (lake-at-rest). The equations can be rewritten in primitive variables as ```math \begin{aligned} @@ -17,8 +17,8 @@ The equations can be rewritten in primitive variables as \end{aligned} ``` The unknown quantities of the Svärd-Kalisch equations are the total water height ``\eta`` and the velocity ``v``. -The gravitational constant is denoted by `g` and the bottom topography (bathymetry) ``b = -D``. The water height above the bathymetry is therefore given by -``h = \eta + D``. +The gravitational constant is denoted by `g` and the bottom topography (bathymetry) ``b = \eta_0 - D``. The water height above the bathymetry is therefore given by +``h = \eta - \eta_0 + D``. The equations by Svärd and Kalisch are presented and analyzed in - Magnus Svärd, Henrik Kalisch (2023) @@ -28,7 +28,7 @@ The equations by Svärd and Kalisch are presented and analyzed in """ struct SvaerdKalischEquations1D{RealT <: Real} <: AbstractSvaerdKalischEquations{1, 3} gravity::RealT # gravitational constant - eta0::RealT # constant "lake-at-rest" total water height + eta0::RealT # constant still-water surface alpha::RealT # coefficient beta::RealT # coefficient gamma::RealT # coefficient @@ -36,7 +36,7 @@ end const SvärdKalischEquations1D = SvaerdKalischEquations1D -function SvaerdKalischEquations1D(; gravity_constant, eta0 = 1.0, alpha = 0.0, +function SvaerdKalischEquations1D(; gravity_constant, eta0 = 0.0, alpha = 0.0, beta = 0.2308939393939394, gamma = 0.04034343434343434) SvaerdKalischEquations1D(gravity_constant, eta0, alpha, beta, gamma) end @@ -60,16 +60,16 @@ References: [link](https://repository.tudelft.nl/islandora/object/uuid:c2091d53-f455-48af-a84b-ac86680455e9/datastream/OBJ/download) """ function initial_condition_dingemans(x, t, equations::SvaerdKalischEquations1D, mesh) - eta0 = 0.8 + h0 = 0.8 A = 0.02 # omega = 2*pi/(2.02*sqrt(2)) - k = 0.8406220896381442 # precomputed result of find_zero(k -> omega^2 - equations.gravity * k * tanh(k * eta0), 1.0) using Roots.jl + k = 0.8406220896381442 # precomputed result of find_zero(k -> omega^2 - equations.gravity * k * tanh(k * h0), 1.0) using Roots.jl if x < -30.5 * pi / k || x > -8.5 * pi / k h = 0.0 else h = A * cos(k * x) end - v = sqrt(equations.gravity / k * tanh(k * eta0)) * h / eta0 + v = sqrt(equations.gravity / k * tanh(k * h0)) * h / h0 if 11.01 <= x && x < 23.04 b = 0.6 * (x - 11.01) / (23.04 - 11.01) elseif 23.04 <= x && x < 27.04 @@ -79,8 +79,8 @@ function initial_condition_dingemans(x, t, equations::SvaerdKalischEquations1D, else b = 0.0 end - eta = h + eta0 - D = -b + eta = h + h0 + D = equations.eta0 - b return SVector(eta, v, D) end @@ -170,14 +170,13 @@ function create_cache(mesh, D = Array{RealT}(undef, nnodes(mesh)) x = grid(solver) for i in eachnode(solver) - D[i] = initial_condition(x[i], 0.0, equations, mesh)[3] + D[i] = still_waterdepth(initial_condition(x[i], 0.0, equations, mesh), equations) end - d = equations.eta0 .+ D h = Array{RealT}(undef, nnodes(mesh)) hv = similar(h) - alpha_hat = sqrt.(equations.alpha * sqrt.(equations.gravity * d) .* d .^ 2) - beta_hat = equations.beta * d .^ 3 - gamma_hat = equations.gamma * sqrt.(equations.gravity * d) .* d .^ 3 + alpha_hat = sqrt.(equations.alpha * sqrt.(equations.gravity * D) .* D .^ 2) + beta_hat = equations.beta * D .^ 3 + gamma_hat = equations.gamma * sqrt.(equations.gravity * D) .* D .^ 3 tmp1 = similar(h) tmp2 = similar(h) hmD1betaD1 = Array{RealT}(undef, nnodes(mesh), nnodes(mesh)) @@ -192,7 +191,7 @@ function create_cache(mesh, else @error "unknown type of first-derivative operator" end - return (hmD1betaD1 = hmD1betaD1, D1betaD1 = D1betaD1, d = d, h = h, hv = hv, + return (hmD1betaD1 = hmD1betaD1, D1betaD1 = D1betaD1, D = D, h = h, hv = hv, alpha_hat = alpha_hat, beta_hat = beta_hat, gamma_hat = gamma_hat, tmp1 = tmp1, tmp2 = tmp2, D1_central = D1_central, D1 = solver.D1) end @@ -201,20 +200,19 @@ end function rhs!(du_ode, u_ode, t, mesh, equations::SvaerdKalischEquations1D, initial_condition, ::BoundaryConditionPeriodic, source_terms, solver, cache) - @unpack hmD1betaD1, D1betaD1, d, h, hv, alpha_hat, beta_hat, gamma_hat, tmp1, tmp2, D1_central = cache + @unpack hmD1betaD1, D1betaD1, D, h, hv, alpha_hat, beta_hat, gamma_hat, tmp1, tmp2, D1_central = cache q = wrap_array(u_ode, mesh, equations, solver) dq = wrap_array(du_ode, mesh, equations, solver) eta = view(q, 1, :) v = view(q, 2, :) - D = view(q, 3, :) deta = view(dq, 1, :) dv = view(dq, 2, :) dD = view(dq, 3, :) fill!(dD, zero(eltype(dD))) @timeit timer() "deta hyperbolic" begin - h = eta .+ D + h = eta .+ D .- equations.eta0 hv = h .* v if solver.D1 isa PeriodicDerivativeOperator || @@ -268,9 +266,9 @@ end @inline function prim2cons(q, equations::SvaerdKalischEquations1D) eta, v, D = q - h = eta + D + b = bathymetry(q, equations) + h = eta - b hv = h * v - b = -D return SVector(h, hv, b) end @@ -279,7 +277,7 @@ end eta = h + b v = hv / h - D = -b + D = equations.eta0 - b return SVector(eta, v, D) end @@ -292,7 +290,8 @@ end end @inline function bathymetry(q, equations::SvaerdKalischEquations1D) - return -q[3] + D = q[3] + return equations.eta0 - D end @inline function waterheight(q, equations::SvaerdKalischEquations1D) @@ -301,7 +300,7 @@ end @inline function energy_total(q, equations::SvaerdKalischEquations1D) eta, v, D = q - e = 0.5 * (equations.gravity * eta^2 + (D + eta) * v^2) + e = 0.5 * (equations.gravity * eta^2 + (D + eta - equations.eta0) * v^2) return e end @@ -327,7 +326,7 @@ number of nodes as length of the second dimension. eta = view(q, 1, :) v = view(q, 2, :) D = view(q, 3, :) - beta_hat = equations.beta * (eta .+ D) .^ 3 + beta_hat = equations.beta * D .^ 3 if cache.D1 isa PeriodicDerivativeOperator || cache.D1 isa UniformPeriodicCoupledOperator tmp = 0.5 * beta_hat .* ((cache.D1 * v) .^ 2) diff --git a/test/test_bbm_bbm_variable_bathymetry_1d.jl b/test/test_bbm_bbm_variable_bathymetry_1d.jl index 7910ab09..03f2abf2 100644 --- a/test/test_bbm_bbm_variable_bathymetry_1d.jl +++ b/test/test_bbm_bbm_variable_bathymetry_1d.jl @@ -90,12 +90,12 @@ EXAMPLES_DIR = joinpath(examples_dir(), "bbm_bbm_variable_bathymetry_1d") "bbm_bbm_variable_bathymetry_1d_dingemans.jl"), tspan=(0.0, 1.0), N=512, - l2=[0.2322073114427607 0.7753458687737584 0.0], - linf=[0.037222719015511885 0.124336213226626 0.0], + l2=[0.2229215734522602 0.750492441160796 0.0], + linf=[0.03584030574058169 0.1202292994661 0.0], cons_error=[1.4210854715202004e-13 3.1478183774857893e-15 0.0], change_waterheight=-1.4210854715202004e-13, change_velocity=-3.1478183774857893e-15, - change_entropy=-1.442231223336421e-9) + change_entropy=3.417533493699221e-7) end end diff --git a/test/test_svaerd_kalisch_1d.jl b/test/test_svaerd_kalisch_1d.jl index 979d5a05..f120f3f2 100644 --- a/test/test_svaerd_kalisch_1d.jl +++ b/test/test_svaerd_kalisch_1d.jl @@ -30,7 +30,7 @@ EXAMPLES_DIR = joinpath(examples_dir(), "svaerd_kalisch_1d") cons_error=[3.979039320256561e-13 4.937137540373564e-5 0.0], change_waterheight=-3.979039320256561e-13, change_entropy=-0.00024362648639453255, - change_entropy_modified=3.240868750253867e-6) + change_entropy_modified=-6.311893230304122e-9) end @trixi_testset "svaerd_kalisch_1d_dingemans_cg" begin @@ -42,7 +42,7 @@ EXAMPLES_DIR = joinpath(examples_dir(), "svaerd_kalisch_1d") cons_error=[1.4210854715202004e-13 4.953054817174909e-5 0.0], change_waterheight=-1.4210854715202004e-13, change_entropy=-0.0002425303440531934, - change_entropy_modified=2.9729466177741415e-6) + change_entropy_modified=-2.6815314413397573e-9) end @trixi_testset "svaerd_kalisch_1d_dingemans_upwind" begin @@ -54,7 +54,7 @@ EXAMPLES_DIR = joinpath(examples_dir(), "svaerd_kalisch_1d") cons_error=[1.1368683772161603e-13 4.871598417571836e-5 0.0], change_waterheight=-1.1368683772161603e-13, change_entropy=-0.00023645232727176335, - change_entropy_modified=2.0682244894487667e-6) + change_entropy_modified=-6.654090611846186e-9) end @trixi_testset "svaerd_kalisch_1d_dingemans_relaxation" begin @@ -62,11 +62,11 @@ EXAMPLES_DIR = joinpath(examples_dir(), "svaerd_kalisch_1d") "svaerd_kalisch_1d_dingemans_relaxation.jl"), tspan=(0.0, 1.0), N=512, - l2=[0.2279601359992612 0.7519295302772953 0.0], - linf=[0.03670816991272552 0.12141112705223758 0.0], - cons_error=[3.979039320256561e-13 4.937017087502672e-5 0.0], + l2=[0.22796107242561717 0.7519327155905444 0.0], + linf=[0.03670834831604197 0.12141172368792873 0.0], + cons_error=[3.979039320256561e-13 4.937137655207271e-5 0.0], change_waterheight=-3.979039320256561e-13, - change_entropy=-0.0002466715038735856, + change_entropy=-0.00024362054875837202, change_entropy_modified=0.0) end