diff --git a/.github/workflows/Format-check.yml b/.github/workflows/Format-check.yml index aa6e808e..240bdf53 100644 --- a/.github/workflows/Format-check.yml +++ b/.github/workflows/Format-check.yml @@ -25,7 +25,7 @@ jobs: - name: Install JuliaFormatter and format run: | julia -e 'using Pkg; Pkg.add(PackageSpec(name = "JuliaFormatter"))' - julia -e 'using JuliaFormatter; format(["src", "test", "examples", "visualization"], verbose = true)' + julia -e 'using JuliaFormatter; format(["src", "test", "examples"], verbose = true)' - name: Format check run: | julia -e ' diff --git a/README.md b/README.md index 3470042c..ddc8380f 100644 --- a/README.md +++ b/README.md @@ -58,7 +58,7 @@ e.g., `include(joinpath(examples_dir(), "svaerd_kalisch_1d", "svaerd_kalisch_1d_ ## Authors -The package is developed and maintained by Joshua Lampert and was initiated as part of the master thesis "Structure-Preserving Numerical Methods for Dispersive Shallow Water Models" (2023). +The package is developed and maintained by Joshua Lampert (University of Hamburg). Some parts of this repository are based on parts of [Dispersive-wave-schemes-notebooks. A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations](https://github.com/ranocha/Dispersive-wave-schemes-notebooks) by Hendrik Ranocha, Dimitrios Mitsotakis and David Ketcheson. The code structure is inspired by [Trixi.jl](https://github.com/trixi-framework/Trixi.jl/). diff --git a/docs/make.jl b/docs/make.jl index cd24ef9f..fe83b895 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -18,7 +18,6 @@ makedocs(; pages = [ "Home" => "index.md", "Overview" => "overview.md", - "Reproduce figures" => "reproduce.md", "Reference" => "ref.md", "License" => "license.md", ]) diff --git a/docs/src/index.md b/docs/src/index.md index 73e7dbf5..442aabf4 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -57,7 +57,7 @@ e.g., `include(joinpath(examples_dir(), "svaerd_kalisch_1d", "svaerd_kalisch_1d_ # Authors -The package is developed and maintained by Joshua Lampert and was initiated as part of the master thesis "Structure-Preserving Numerical Methods for Dispersive Shallow Water Models" (2023). +The package is developed and maintained by Joshua Lampert (University of Hamburg). Some parts of this repository are based on parts of [Dispersive-wave-schemes-notebooks. A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations](https://github.com/ranocha/Dispersive-wave-schemes-notebooks) by Hendrik Ranocha, Dimitrios Mitsotakis and David Ketcheson. The code structure is inspired by [Trixi.jl](https://github.com/trixi-framework/Trixi.jl/). diff --git a/docs/src/overview.md b/docs/src/overview.md index 00eac065..ef1d1a5b 100644 --- a/docs/src/overview.md +++ b/docs/src/overview.md @@ -117,7 +117,8 @@ end gif(anim, "shoaling_solution.gif", fps = 25) ``` -It is also possible to plot the solution variables at a fixed spatial point over time by calling `plot(semi => sol, x)` for some `x`-value, see [plot_examples.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/visualization/plot_examples.jl) for some examples. +It is also possible to plot the solution variables at a fixed spatial point over time by calling `plot(semi => sol, x)` for some `x`-value, see [plot_examples.jl](https://github.com/JoshuaLampert/2023-master-thesis/blob/main/code/plot_examples.jl) from +the reproducibility repository of the master thesis of Joshua Lampert for some examples. Often, it is interesting to have a look at how the quantities that are recorded by the `AnalysisCallback` evolve in time. To this end, you can `plot` the `AnalysisCallback` by @@ -224,7 +225,7 @@ For more details see also the [documentation of SummationByPartsOperators.jl](ht Some more examples sorted by the simulated equations can be found in the [examples/](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/tree/main/examples) subdirectory. Especially, in [examples/svaerd\_kalisch\_1d/](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/tree/main/examples/svaerd_kalisch_1d) you can find Julia scripts that solve the [`SvaerdKalischEquations1D`](@ref) that were not covered in this tutorial. The same steps as described above, however, apply in the same way to these equations. Attention must be paid for these equations because they do not conserve the classical total entropy ``\mathcal E``, but a modified entropy ``\hat{\mathcal E}``, available as [`entropy_modified`](@ref). -More examples, especially focussing on plotting, can be found in the scripts [create_figures.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/visualization/create_figures.jl) and [plot_examples.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/visualization/plot_examples.jl). +More examples, especially focussing on plotting, can be found in the scripts [create_figures.jl](https://github.com/JoshuaLampert/2023-master-thesis/blob/main/code/create_figures.jl) and [plot_examples.jl](https://github.com/JoshuaLampert/2023-master-thesis/blob/main/code/plot_examples.jl) from the reproducibility repository of the master thesis of Joshua Lampert. ## References diff --git a/docs/src/reproduce.md b/docs/src/reproduce.md deleted file mode 100644 index 235be748..00000000 --- a/docs/src/reproduce.md +++ /dev/null @@ -1,19 +0,0 @@ -# How to reproduce the figures - -In order to reproduce all figures used in the master thesis "Structure-Preserving Numerical Methods for Dispersive Shallow Water Models" (2023) by Joshua Lampert execute the file located at the path [`DispersiveShallowWater.path_create_figures()`](@ref). From the Julia REPL, this can be done by: - -```julia -julia> using DispersiveShallowWater -julia> include(DispersiveShallowWater.path_create_figures()) -``` -Note that for one figure [Trixi.jl](https://github.com/trixi-framework/Trixi.jl) is needed, so download Trixi.jl first: - -```julia -julia> using Pkg -julia> Pkg.add("Trixi") -``` -Executing the script may take a while. It will generate a folder `out/` with certain subfolders containing the figures. If you want to modify the plots or only produce a subset of plots, you can download the script [`create_figures.jl`](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/visualization/create_figures.jl), modify it accordingly and run it by: - -```julia -julia> include("create_figures.jl") -``` diff --git a/src/util.jl b/src/util.jl index 1dc2168d..c15072af 100644 --- a/src/util.jl +++ b/src/util.jl @@ -48,22 +48,6 @@ function default_example() "bbm_bbm_variable_bathymetry_1d_basic.jl") end -""" - path_create_figures() - -Return the path to the file that creates all figures used in the master thesis "Structure-preserving -Numerical Methods for Dispersive Shallow Water Model" (2023). Executing this julia script may take a -while. - -# Examples -```@example -include(DispersiveShallowWater.path_create_figures()) -``` -""" -function path_create_figures() - pkgdir(DispersiveShallowWater, "visualization", "create_figures.jl") -end - # Note: We can't call the method below `DispersiveShallowWater.include` since that is created automatically # inside `module DispersiveShallowWater` to `include` source files and evaluate them within the global scope # of `DispersiveShallowWater`. However, users will want to evaluate in the global scope of `Main` or something diff --git a/test/test_unit.jl b/test/test_unit.jl index bee4c3ac..90fa26a7 100644 --- a/test/test_unit.jl +++ b/test/test_unit.jl @@ -216,7 +216,6 @@ using SparseArrays: sparse, SparseMatrixCSC @testset "util" begin @test_nowarn get_examples() - @test_nowarn DispersiveShallowWater.path_create_figures() @test_nowarn trixi_include(default_example(), tspan = (0.0, 0.1)) accuracy_orders = [2, 4, 6] diff --git a/visualization/bbm_bbm_1d_widestencil.jl b/visualization/bbm_bbm_1d_widestencil.jl deleted file mode 100644 index 8dd057b0..00000000 --- a/visualization/bbm_bbm_1d_widestencil.jl +++ /dev/null @@ -1,43 +0,0 @@ -using OrdinaryDiffEq -using DispersiveShallowWater -using SummationByPartsOperators: periodic_derivative_operator -using SparseArrays: sparse - -############################################################################### -# Semidiscretization of the BBM-BBM equations - -equations = BBMBBMEquations1D(gravity_constant = 9.81, D = 2.0) - -# initial_condition_convergence_test needs periodic boundary conditions -initial_condition = initial_condition_convergence_test -boundary_conditions = boundary_condition_periodic - -# create homogeneous mesh -coordinates_min = -35.0 -coordinates_max = 35.0 -N = 512 -mesh = Mesh1D(coordinates_min, coordinates_max, N) - -# create solver with periodic SBP operators of accuracy order 4 -accuracy_order = 4 -D1 = periodic_derivative_operator(1, accuracy_order, mesh.xmin, mesh.xmax, mesh.N) -D2 = sparse(D1)^2 -solver = Solver(D1, D2) - -# semidiscretization holds all the necessary data structures for the spatial discretization -semi = Semidiscretization(mesh, equations, initial_condition, solver, - boundary_conditions = boundary_conditions) - -############################################################################### -# Create `ODEProblem` and run the simulation -tspan = (0.0, 30.0) -ode = semidiscretize(semi, tspan) -analysis_callback = AnalysisCallback(semi; interval = 10, - extra_analysis_errors = (:conservation_error,), - extra_analysis_integrals = (waterheight_total, - velocity, entropy)) -callbacks = CallbackSet(analysis_callback) - -saveat = range(tspan..., length = 100) -sol = solve(ode, Tsit5(), abstol = 1e-7, reltol = 1e-7, - save_everystep = false, callback = callbacks, saveat = saveat) diff --git a/visualization/bbm_bbm_variable_bathymetry_1d_upwind.jl b/visualization/bbm_bbm_variable_bathymetry_1d_upwind.jl deleted file mode 100644 index 3ab09684..00000000 --- a/visualization/bbm_bbm_variable_bathymetry_1d_upwind.jl +++ /dev/null @@ -1,45 +0,0 @@ -using OrdinaryDiffEq -using DispersiveShallowWater -using SummationByPartsOperators: upwind_operators, periodic_derivative_operator -using SparseArrays: sparse - -############################################################################### -# Semidiscretization of the BBM-BBM equations - -equations = BBMBBMVariableEquations1D(gravity_constant = 9.81) - -# initial_condition_convergence_test needs periodic boundary conditions -initial_condition = initial_condition_convergence_test -boundary_conditions = boundary_condition_periodic - -# create homogeneous mesh -coordinates_min = -35.0 -coordinates_max = 35.0 -N = 512 -mesh = Mesh1D(coordinates_min, coordinates_max, N) - -# create solver with periodic SBP operators of accuracy order 4 -accuracy_order = 4 -D1 = upwind_operators(periodic_derivative_operator; derivative_order = 1, - accuracy_order = accuracy_order, xmin = mesh.xmin, xmax = mesh.xmax, - N = mesh.N) -D2 = sparse(D1.plus) * sparse(D1.minus) -solver = Solver(D1, D2) - -# semidiscretization holds all the necessary data structures for the spatial discretization -semi = Semidiscretization(mesh, equations, initial_condition, solver, - boundary_conditions = boundary_conditions) - -############################################################################### -# Create `ODEProblem` and run the simulation -tspan = (0.0, 30.0) -ode = semidiscretize(semi, tspan) -analysis_callback = AnalysisCallback(semi; interval = 10, - extra_analysis_errors = (:conservation_error,), - extra_analysis_integrals = (waterheight_total, - velocity, entropy)) -callbacks = CallbackSet(analysis_callback) - -saveat = range(tspan..., length = 100) -sol = solve(ode, Tsit5(), abstol = 1e-7, reltol = 1e-7, - save_everystep = false, callback = callbacks, saveat = saveat) diff --git a/visualization/bbm_bbm_variable_bathymetry_1d_widestencil.jl b/visualization/bbm_bbm_variable_bathymetry_1d_widestencil.jl deleted file mode 100644 index 8f62c419..00000000 --- a/visualization/bbm_bbm_variable_bathymetry_1d_widestencil.jl +++ /dev/null @@ -1,43 +0,0 @@ -using OrdinaryDiffEq -using DispersiveShallowWater -using SummationByPartsOperators: periodic_derivative_operator -using SparseArrays: sparse - -############################################################################### -# Semidiscretization of the BBM-BBM equations - -equations = BBMBBMVariableEquations1D(gravity_constant = 9.81) - -# initial_condition_convergence_test needs periodic boundary conditions -initial_condition = initial_condition_convergence_test -boundary_conditions = boundary_condition_periodic - -# create homogeneous mesh -coordinates_min = -35.0 -coordinates_max = 35.0 -N = 512 -mesh = Mesh1D(coordinates_min, coordinates_max, N) - -# create solver with periodic SBP operators of accuracy order 4 -accuracy_order = 4 -D1 = periodic_derivative_operator(1, accuracy_order, mesh.xmin, mesh.xmax, mesh.N) -D2 = sparse(D1)^2 -solver = Solver(D1, D2) - -# semidiscretization holds all the necessary data structures for the spatial discretization -semi = Semidiscretization(mesh, equations, initial_condition, solver, - boundary_conditions = boundary_conditions) - -############################################################################### -# Create `ODEProblem` and run the simulation -tspan = (0.0, 30.0) -ode = semidiscretize(semi, tspan) -analysis_callback = AnalysisCallback(semi; interval = 10, - extra_analysis_errors = (:conservation_error,), - extra_analysis_integrals = (waterheight_total, - velocity, entropy)) -callbacks = CallbackSet(analysis_callback) - -saveat = range(tspan..., length = 100) -sol = solve(ode, Tsit5(), abstol = 1e-7, reltol = 1e-7, - save_everystep = false, callback = callbacks, saveat = saveat) diff --git a/visualization/create_figures.jl b/visualization/create_figures.jl deleted file mode 100644 index 873cc933..00000000 --- a/visualization/create_figures.jl +++ /dev/null @@ -1,735 +0,0 @@ -using DispersiveShallowWater -using SummationByPartsOperators: SummationByPartsOperators, - periodic_derivative_operator, - upwind_operators, - legendre_derivative_operator, - legendre_second_derivative_operator, - UniformPeriodicMesh1D, - couple_discontinuously, - couple_continuously -using Trixi: PlotData1D -using SparseArrays: sparse -using Plots -using LaTeXStrings - -const OUT = "out/" -ispath(OUT) || mkpath(OUT) -const VISUALIZATION_DIR = pkgdir(DispersiveShallowWater, "visualization") -const EXAMPLES_DIR_BBMBBM = joinpath(examples_dir(), "bbm_bbm_1d") -const EXAMPLES_DIR_BBMBBM_VARIABLE = joinpath(examples_dir(), - "bbm_bbm_variable_bathymetry_1d") -const EXAMPLES_DIR_SVAERD_KALISCH = joinpath(examples_dir(), "svaerd_kalisch_1d") - -# Chapter 2 -# Plot of bathymetry and waterheight -function fig_1() - L = 1.0 - n = 100 - x = LinRange(0.0, L, n) - fontsize = 20 - - # just pick some function for b and eta that look nice - H = 1.012 - - b(x) = x * cos.(3 * pi * x) + H - plot(x, b, color = :gray, fill = (0, 0.8, :gray), fillstyle = :/, linewidth = 3, - legend = nothing, ticks = nothing, border = :none) - - eta(x) = x / (x^2 + 1) * sin(2 * pi * x) + H + 1.5 - plot!(x, eta, color = :blue, fill = (b.(x), 0.4, :blue), linewidth = 3) - - x1 = 0.2 - plot!([x1, x1], [b(x1), eta(x1)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), - annotation = (x1 - 0.08, (eta(x1) + b(x1)) / 2, text(L"h(t, x)", fontsize)), - linewidth = 2) - x2 = 0.4 - plot!([x2, x2], [0.0, b(x2)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), - annotation = (x2 + 0.06, b(x2) / 2, text(L"b(x)", fontsize)), linewidth = 2) - x3 = 0.8 - plot!([x3, x3], [0.0, eta(x3)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), - annotation = (x3 - 0.08, eta(x3) / 2, text(L"\eta(t, x)", fontsize)), - linewidth = 2) - - savefig(joinpath(OUT, "bathymetry.pdf")) -end - -# Plot of dispersion relations -function fig_2() - linewidth = 2 - markersize = 5 - - h0 = 1.0 - g = 1.0 - c0 = sqrt(g * h0) - - k = 0.01:0.5:(8 * pi) - k_zoom = 0.01:0.3:pi - ylim = (0.0, 1.1) - - omega_euler(k) = sqrt(g * k) * sqrt(tanh(h0 * k)) - c_euler(k) = omega_euler(k) / k - plot(k, c_euler.(k) ./ c0, label = "Euler", ylim = ylim, xguide = L"k", - yguide = L"c/c_0", linewidth = linewidth, markershape = :circle, - markersize = markersize) - plot!(k_zoom, c_euler.(k_zoom) ./ c0, ylim = (0.54, 1.0), - inset = bbox(0.35, 0.1, 0.35, 0.3), subplot = 2, legend = nothing, - linewidth = linewidth, markershape = :circle, markersize = markersize, - framestyle = :box) - - function plot_dispersion_relation(omega, label, markershape) - c(k) = omega(k) / k - plot!(k, c.(k) ./ c0, label = label, linewidth = linewidth, - markershape = markershape, markersize = markersize) - plot!(k_zoom, c.(k_zoom) ./ c0, subplot = 2, linewidth = linewidth, - markershape = markershape, markersize = markersize) - end - - omega_bbmbbm_(k, d0) = sqrt(g * h0) * k / (1 + 1 / 6 * (d0 * k)^2) - omega_bbmbbm(k) = omega_bbmbbm_(k, h0) - plot_dispersion_relation(omega_bbmbbm, "BBM-BBM", :cross) - - alpha_set1 = -1 / 3 * c0 * h0^2 - beta_set1 = 0.0 * h0^3 - gamma_set1 = 0.0 * c0 * h0^3 - - alpha_set2 = 0.0004040404040404049 * c0 * h0^2 - beta_set2 = 0.49292929292929294 * h0^3 - gamma_set2 = 0.15707070707070708 * c0 * h0^3 - - alpha_set3 = 0.0 * c0 * h0^2 - beta_set3 = 0.27946992481203003 * h0^3 - gamma_set3 = 0.0521077694235589 * c0 * h0^3 - - alpha_set4 = 0.0 * c0 * h0^2 - beta_set4 = 0.2308939393939394 * h0^3 - gamma_set4 = 0.04034343434343434 * c0 * h0^3 - - function char_equation(alpha, beta, gamma, k) - a = (1 + beta / h0 * k^2) - b = (-alpha - beta * alpha / h0 * k^2 - gamma / h0) * k^3 - c = -g * h0 * k^2 + gamma * alpha / h0 * k^6 - omega1 = (-b + sqrt(b^2 - 4 * a * c)) / (2 * a) - # omega2 = (-b - sqrt(b^2 - 4*a*c))/(2*a) - return omega1 - end - - omega_set1(k) = char_equation(alpha_set1, beta_set1, gamma_set1, k) - plot_dispersion_relation(omega_set1, "S.-K. set 1", :rtriangle) - - omega_set2(k) = char_equation(alpha_set2, beta_set2, gamma_set2, k) - plot_dispersion_relation(omega_set2, "S.-K. set 2", :star5) - - omega_set3(k) = char_equation(alpha_set3, beta_set3, gamma_set3, k) - plot_dispersion_relation(omega_set3, "S.-K. set 3", :star8) - - omega_set4(k) = char_equation(alpha_set4, beta_set4, gamma_set4, k) - plot_dispersion_relation(omega_set4, "S.-K. set 4", :diamond) - - # Plot box - plot!([0.0, pi], [0.54, 0.54], color = :black, label = :none) - plot!([0.0, pi], [1.0, 1.0], color = :black, label = :none) - plot!([0.0, 0.0], [0.54, 1.0], color = :black, label = :none) - plot!([pi, pi], [0.54, 1.0], color = :black, label = :none) - - # Plot connecting lines - plot!([pi, 6.8], [0.54, 0.629], color = :black, label = :none) - plot!([pi, 6.8], [1, 1.01], color = :black, label = :none) - - savefig(joinpath(OUT, "dispersion_relations.pdf")) -end - -# Chapter 4 -# Chapter 4.1 Soliton - -const OUT_SOLITON = joinpath(OUT, "soliton") -ispath(OUT_SOLITON) || mkpath(OUT_SOLITON) - -# Plot convergence orders for baseline and relaxation -function fig_3() - tspan = (0.0, 10.0) - accuracy_orders = [2, 4, 6, 8] - iters = [4, 4, 4, 3] - initial_Ns = [128, 128, 128, 128] - - all_Ns = minimum(initial_Ns) * 2 .^ (0:(maximum(iters) - 1)) - - linewidth = 2 - markersize = 5 - markershapes = [:circle, :star5, :star8, :rtriangle] - plot(label = :none, xscale = :log2, yscale = :log10, xlabel = "N", ylim = (1e-5, 1e2), - ylabel = L"\Vert\eta - \eta_{ana}\Vert_2 + \Vert v - v_{ana}\Vert_2", - legend = :bottomleft, layout = 2) - - # left subplot: baseline - for i in 1:length(accuracy_orders) - Ns = initial_Ns[i] * 2 .^ (0:(iters[i] - 1)) - _, errormatrix = convergence_test(joinpath(EXAMPLES_DIR_BBMBBM, - "bbm_bbm_1d_basic.jl"), - iters[i]; N = initial_Ns[i], tspan = tspan, - accuracy_order = accuracy_orders[i]) - # Use sum over all L^2-errors for all variables, i.e. ||η - η_ana||_2 + ||v - v_ana||_2 - l2_err = sum(errormatrix[:l2], dims = 2) - eocs = log.(l2_err[2:end] ./ l2_err[1:(end - 1)]) ./ log(0.5) - eoc_mean = round(sum(eocs) / length(eocs), digits = 2) - plot!(Ns, l2_err, label = "p = $(accuracy_orders[i]), EOC: $eoc_mean", - markershape = markershapes[i], linewidth = linewidth, markersize = markersize, - subplot = 1) - end - - # right subplot: relaxation - for i in 1:length(accuracy_orders) - Ns = initial_Ns[i] * 2 .^ (0:(iters[i] - 1)) - _, errormatrix = convergence_test(joinpath(EXAMPLES_DIR_BBMBBM, - "bbm_bbm_1d_relaxation.jl"), - iters[i]; N = initial_Ns[i], tspan = tspan, - accuracy_order = accuracy_orders[i]) - # Use sum over all L^2-errors for all variables, i.e. ||η - η_ana||_2 + ||v - v_ana||_2 - l2_err = sum(errormatrix[:l2], dims = 2) - eocs = log.(l2_err[2:end] ./ l2_err[1:(end - 1)]) ./ log(0.5) - eoc_mean = round(sum(eocs) / length(eocs), digits = 2) - plot!(Ns, l2_err, label = "p = $(accuracy_orders[i]), EOC: $eoc_mean", - markershape = markershapes[i], linewidth = linewidth, markersize = markersize, - subplot = 2) - end - xticks!(all_Ns, string.(all_Ns)) - savefig(joinpath(OUT_SOLITON, "orders.pdf")) -end - -# Plot errors, change of invariants, and solution at final time for baseline and relaxation -function fig_4_5_6() - linewidth = 2 - linestyles = [:dash, :dot] - - g = 9.81 - D = 2.0 - c = 5 / 2 * sqrt(g * D) - xmin = -35.0 - xmax = 35.0 - tspan = (0.0, 50 * (xmax - xmin) / c) - N = 512 - accuracy_order = 8 - - # baseline - trixi_include(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_basic.jl"), - gravity_constant = g, D = D, coordinates_min = xmin, - coordinates_max = xmax, tspan = tspan, N = N, - accuracy_order = accuracy_order) - p1 = plot(analysis_callback, title = "", label_extension = "baseline", - linestyles = [:solid :dash :dot], - linewidth = linewidth, layout = 2, subplot = 1) - p2 = plot(analysis_callback, title = "", what = (:errors,), - label_extension = "baseline", linestyle = linestyles[1], - linewidth = linewidth, - ylabel = L"\Vert\eta - \eta_{ana}\Vert_2 + \Vert v - v_{ana}\Vert_2", - exclude = [:conservation_error]) - p3 = plot(semi => sol, label = "baseline", plot_initial = true, plot_bathymetry = false, - linestyle = linestyles[1], linewidth = linewidth, plot_title = "", title = "", - ylims = [(-8, 3) (-1, 40)]) - x = DispersiveShallowWater.grid(semi) - q = DispersiveShallowWater.wrap_array(sol.u[end], semi) - plot!(p3, x, view(q, 1, :), inset = (1, bbox(0.11, 0.6, 0.35, 0.32)), subplot = 3, - xlim = (-20, -10), - ylim = (-0.05, 0.05), legend = nothing, linewidth = linewidth, - linestyle = linestyles[1], - color = 2, - tickfontsize = 5, yticks = [0.04, 0.0, -0.04], xticks = [-20, -15, -10], - plot_initial = true, plot_bathymetry = false, framestyle = :box) - q_exact = DispersiveShallowWater.wrap_array(DispersiveShallowWater.compute_coefficients(initial_condition, - tspan[2], - semi), - semi) - plot!(p3, x, view(q_exact, 1, :), subplot = 3, legend = nothing, linewidth = linewidth, - linestyle = :solid, color = 1) - - # relaxation - trixi_include(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_relaxation.jl"), - gravity_constant = g, D = D, coordinates_min = xmin, - coordinates_max = xmax, tspan = tspan, N = N, - accuracy_order = accuracy_order) - plot!(p1, analysis_callback, title = "", label_extension = "relaxation", - linestyles = [:solid :dash :dot], - linewidth = linewidth, subplot = 2) - plot!(p2, analysis_callback, title = "", what = (:errors,), - label_extension = "relaxation", linestyle = linestyles[2], linewidth = linewidth, - ylabel = L"\Vert\eta - \eta_{ana}\Vert_2 + \Vert v - v_{ana}\Vert_2", - exclude = [:conservation_error]) - plot!(p3, semi => sol, plot_bathymetry = false, label = "relaxation", - linestyle = linestyles[2], - linewidth = linewidth, plot_title = "", title = "", color = 3) - x = DispersiveShallowWater.grid(semi) - q = DispersiveShallowWater.wrap_array(sol.u[end], semi) - plot!(p3, x, view(q, 1, :), subplot = 3, legend = nothing, linewidth = linewidth, - linestyle = linestyles[2], color = 3) - - # Plot box - plot!(p3, [-20, -10], [-0.1, -0.1], color = :black, label = :none) - plot!(p3, [-20, -10], [0.1, 0.1], color = :black, label = :none) - plot!(p3, [-20, -20], [-0.1, 0.1], color = :black, label = :none) - plot!(p3, [-10, -10], [-0.1, 0.1], color = :black, label = :none) - - # Plot connecting lines - plot!(p3, [-20, -29], [-0.1, -3.6], color = :black, label = :none) - plot!(p3, [-10, -3.15], [-0.1, -3.6], color = :black, label = :none) - - savefig(p1, joinpath(OUT_SOLITON, "invariants.pdf")) - savefig(p2, joinpath(OUT_SOLITON, "errors.pdf")) - savefig(p3, joinpath(OUT_SOLITON, "solution.pdf")) -end - -# Plot errors for narrow-stencil, wide-stencil and upwind operators (all using relaxation) -function fig_7() - linewidth = 2 - linestyles = [:solid, :dash, :dot, :dashdot] - - g = 9.81 - D = 2.0 - c = 5 / 2 * sqrt(g * D) - xmin = -35.0 - xmax = 35.0 - tspan = (0.0, 15 * (xmax - xmin) / c) - N = 512 - accuracy_order = 8 - - plot() - - D1 = periodic_derivative_operator(1, accuracy_order, xmin, xmax, N) - D2 = sparse(D1)^2 - solver_widestencil = Solver(D1, D2) - - D1 = periodic_derivative_operator(1, accuracy_order, xmin, xmax, N) - D2 = periodic_derivative_operator(2, accuracy_order, xmin, xmax, N) - solver_narrowstencil = Solver(D1, D2) - - D1 = upwind_operators(periodic_derivative_operator; derivative_order = 1, - accuracy_order = accuracy_order, xmin = xmin, xmax = xmax, - N = N) - D2 = sparse(D1.plus) * sparse(D1.minus) - solver_upwind = Solver(D1, D2) - solvers = [ - solver_narrowstencil, - solver_narrowstencil, - solver_widestencil, - solver_upwind, - ] - labels = [ - "narrow-stencil", - "narrow-stencil in velocity equation", - "wide-stencil", - "upwind", - ] - examples = [joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_relaxation.jl"), - joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_relaxation.jl"), - joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_relaxation.jl"), - joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_relaxation.jl")] - - for (i, solver) in enumerate(solvers) - trixi_include(examples[i], - gravity_constant = g, D = D, coordinates_min = xmin, - coordinates_max = xmax, tspan = tspan, N = N, - accuracy_order = accuracy_order, solver = solver) - plot!(analysis_callback, title = "", what = (:errors,), - label_extension = labels[i], linestyle = linestyles[i], - linewidth = linewidth, - ylabel = L"\Vert\eta - \eta_{ana}\Vert_2 + \Vert v - v_{ana}\Vert_2", - exclude = [:conservation_error, :linf_error]) - end - - savefig(joinpath(OUT_SOLITON, "errors_stencils.pdf")) -end - -# Compare the orders of narrow-stencil, wide-stencil and upwind SBP operators -# Not used in the thesis, but nonetheless interesting -function fig_orders_different_stencils() - tspan = (0.0, 10.0) - xmin = -35.0 - xmax = 35.0 - accuracy_orders = [2, 4, 6, 8] - iters = [4, 4, 4, 3] - initial_Ns = [128, 128, 128, 128] - - all_Ns = minimum(initial_Ns) * 2 .^ (0:(maximum(iters) - 1)) - - linewidth = 2 - markersize = 5 - markershapes = [:circle, :star5, :star8, :rtriangle] - plot(label = :none, xscale = :log2, yscale = :log10, xlabel = "N", ylim = (1e-4, 1e3), - ylabel = L"\Vert\eta - \eta_{ana}\Vert_2 + \Vert v - v_{ana}\Vert_2", - legend = :topright, layout = (1, 3)) - - # put examples in separate files since the different solvers cannot be set with the convergence_test - # because they depend on N - examples = [ - joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, "bbm_bbm_variable_bathymetry_1d_basic.jl"), - joinpath(VISUALIZATION_DIR, "bbm_bbm_variable_bathymetry_1d_widestencil.jl"), - joinpath(VISUALIZATION_DIR, "bbm_bbm_variable_bathymetry_1d_upwind.jl")] - for (j, example) in enumerate(examples) - for i in 1:length(accuracy_orders) - Ns = initial_Ns[i] * 2 .^ (0:(iters[i] - 1)) - _, errormatrix = convergence_test(example, - iters[i]; N = initial_Ns[i], tspan = tspan, - accuracy_order = accuracy_orders[i], - coordinates_min = xmin, - coordinates_max = xmax) - # Use sum over all L^2-errors for all variables, i.e. ||η - η_ana||_2 + ||v - v_ana||_2 - l2_err = sum(errormatrix[:l2], dims = 2) - eocs = log.(l2_err[2:end] ./ l2_err[1:(end - 1)]) ./ log(0.5) - eoc_mean = round(sum(eocs) / length(eocs), digits = 2) - plot!(Ns, l2_err, label = "p = $(accuracy_orders[i]), EOC: $eoc_mean", - markershape = markershapes[i], linewidth = linewidth, - markersize = markersize, - subplot = j) - end - end - - xticks!(all_Ns, string.(all_Ns)) - plot!(top_margin = 3 * Plots.mm, subplot = 1) - savefig(joinpath(OUT_SOLITON, "orders_stencils.pdf")) -end - -# Chapter 4.2 Lake-at-rest -const OUT_LAKEATREST = joinpath(OUT, "lake_at_rest") -ispath(OUT_LAKEATREST) || mkpath(OUT_LAKEATREST) - -# Lake-at-rest error for long-time simulation with discontinuous bottom -function fig_8() - linewidth = 2 - N = 100 - accuracy_order = 4 - xmin = -1.0 - xmax = 1.0 - tspan = (0.0, 100.0) - D1 = upwind_operators(periodic_derivative_operator; derivative_order = 1, - accuracy_order = accuracy_order, xmin = xmin, xmax = xmax, - N = N) - D2 = sparse(D1.plus) * sparse(D1.minus) - solver = Solver(D1, D2) - trixi_include(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_well_balanced.jl"); - N = N, tspan = tspan, solver = solver, dt = 0.5) - plot(analysis_callback, exclude = [:waterheight_total, :velocity, :entropy], - label_extension = "BBM-BBM", plot_title = "", title = "", - ylabel = "lake-at-rest error", linewidth = linewidth) - - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_well_balanced.jl"); - N = N, tspan = tspan, solver = solver, dt = 0.003) - plot!(analysis_callback, exclude = [:waterheight_total, :momentum, :entropy], - label_extension = "Svärd-Kalisch", plot_title = "", title = "", - ylabel = "lake-at-rest error", linestyle = :dash, linewidth = linewidth) - savefig(joinpath(OUT_LAKEATREST, "lake_at_rest_error_discontinuous.pdf")) -end - -# Plot of condition number of matrix that needs to be inverted for the Svärd-Kalisch equations for different order of accuracy -# Not used in the thesis, but nonetheless interesting -function fig_condition_number() - xmin = -1.0 - xmax = 1.0 - accuracy_orders = [2, 4, 6, 8] - eta0 = 2.0 - beta = 0.49292929292929294 - Ns = 10:10:500 - conds = Array{Float64}(undef, length(Ns)) - plot(xlabel = "N", ylabel = L"cond_2") - for accuracy_order in accuracy_orders - for (i, N) in enumerate(Ns) - D1 = upwind_operators(periodic_derivative_operator; derivative_order = 1, - accuracy_order = accuracy_order, xmin = xmin, xmax = xmax, - N = N) - eta = fill(eta0, N) - D = fill(-1.0, N) - for (i, x) in enumerate(SummationByPartsOperators.grid(D1)) - if x >= 0.5 && x <= 0.75 - D[i] = -1.5 - 0.5 * sinpi(2.0 * x) - end - end - d = eta0 .+ D - beta_hat = beta * d .^ 3 - - D1betaD1 = sparse(D1.plus) * Diagonal(beta_hat) * sparse(D1.minus) - hmD1betaD1 = Diagonal(eta .+ D) - D1betaD1 - conds[i] = cond(Matrix(hmD1betaD1)) - end - plot!(Ns, conds, label = "p = $accuracy_order", linewidth = 2, linestyle = :auto) - end - savefig(joinpath(OUT_LAKEATREST, "condition_numbers.pdf")) -end - -# Chapter 4.3 Dingemans -const OUT_DINGEMANS = joinpath(OUT, "dingemans") -ispath(OUT_DINGEMANS) || mkpath(OUT_DINGEMANS) - -# Plot of total waterheight for different models at different points in time -function fig_9() - linewidth = 3 - fontsize = 16 - linestyles = [:solid, :dash, :dot] - - N = 512 - steps = [100, 200, 300, 500] - xlims_zoom = [(-25, 0), (5, 30), (20, 45), (-100, -75)] - ylim_zoom = (0.75, 0.85) - - trixi_include(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_dingemans.jl"); - N = N) - plot(layout = (2, 2), ylim = (-0.05, 0.86), size = (1200, 800), - titlefontsize = fontsize) - for (i, step) in enumerate(steps) - plot!(semi => sol, step = step, conversion = waterheight_total, label = "BBM-BBM", - subplot = i, plot_title = "", linewidth = linewidth, legend = :none, - guidefontsize = fontsize, tickfontsize = fontsize, linestyle = linestyles[1]) - plot!(semi => sol, step = step, inset = (i, bbox(0.1, 0.2, 0.6, 0.5)), - conversion = waterheight_total, linewidth = linewidth, legend = :none, - framestyle = :box, xlim = xlims_zoom[i], ylim = ylim_zoom, - subplot = length(steps) + i, plot_title = "", title = "", xguide = "", - yguide = "", linestyle = linestyles[1]) - end - - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, "svaerd_kalisch_1d_dingemans.jl"); - N = N) - for (i, step) in enumerate(steps) - plot!(semi => sol, step = step, conversion = waterheight_total, - label = "Svärd-Kalisch (set 3)", subplot = i, plot_bathymetry = false, - plot_title = "", linewidth = linewidth, legend = :none, - guidefontsize = fontsize, tickfontsize = fontsize, color = 2, - linestyle = linestyles[2]) - plot!(semi => sol, step = step, conversion = waterheight_total, - linewidth = linewidth, legend = :none, framestyle = :box, - xlim = xlims_zoom[i], ylim = ylim_zoom, subplot = length(steps) + i, - plot_title = "", title = "", xguide = "", yguide = "", color = 2, - linestyle = linestyles[2]) - end - - trixi_include("elixir_shallowwater_1d_dingemans.jl") - for (i, step) in enumerate(steps) - pd = PlotData1D(sol.u[step], semi) - plot!(pd["H"], label = "Shallow water", subplot = i, - title = "t = $(round(sol.t[step], digits = 2))", plot_title = "", - linewidth = linewidth, legend = :none, guidefontsize = fontsize, - tickfontsize = fontsize, color = 3, linestyle = linestyles[3]) - plot!(pd["H"], linewidth = linewidth, legend = :none, - framestyle = :box, xlim = xlims_zoom[i], ylim = ylim_zoom, - subplot = length(steps) + i, plot_title = "", title = "", xguide = "", - yguide = "", color = 3, linestyle = linestyles[3]) - end - - # dirty hack to have one legend for all subplots - plot!(subplot = 3, legend_column = 2, bottom_margin = 22 * Plots.mm, - legend = (0.7, -0.34), legendfontsize = 12) - plot!(left_margin = 5 * Plots.mm) - - # plot boxes - for i in 1:length(steps) - plot!([xlims_zoom[i][1], xlims_zoom[i][2]], [ylim_zoom[1], ylim_zoom[1]], - color = :black, label = :none, subplot = i, linewidth = 2) - plot!([xlims_zoom[i][1], xlims_zoom[i][2]], [ylim_zoom[2], ylim_zoom[2]], - color = :black, label = :none, subplot = i, linewidth = 2) - plot!([xlims_zoom[i][1], xlims_zoom[i][1]], [ylim_zoom[1], ylim_zoom[2]], - color = :black, label = :none, subplot = i, linewidth = 2) - plot!([xlims_zoom[i][2], xlims_zoom[i][2]], [ylim_zoom[1], ylim_zoom[2]], - color = :black, label = :none, subplot = i, linewidth = 2) - end - # plot connecting lines - upper_corners = [[-119.5, 0.68], [-9.5, 0.68]] - for i in 1:length(steps) - plot!([xlims_zoom[i][1], upper_corners[1][1]], [ylim_zoom[1], upper_corners[1][2]], - color = :black, label = :none, subplot = i, linewidth = 2) - plot!([xlims_zoom[i][2], upper_corners[2][1]], [ylim_zoom[1], upper_corners[2][2]], - color = :black, label = :none, subplot = i, linewidth = 2) - end - savefig(joinpath(OUT_DINGEMANS, "waterheight_over_time.pdf")) -end - -# Plot of total waterheight for Svärd-Kalisch equations at different points in space and different orders of accuracy -function fig_10() - ylim = (0.75, 0.85) - yticks = [0.76, 0.78, 0.8, 0.82, 0.84] - x_values = [3.04, 9.44, 20.04, 26.04, 30.44, 37.04] - tlims = [ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ] - plot(layout = (3, 2)) - - N = 512 - tspan = (0.0, 70.0) - saveat = range(tspan..., length = 1000) - accuracy_orders = [2, 4, 6] - linestyles = [:solid, :dash, :dot] - - for (i, accuracy_order) in enumerate(accuracy_orders) - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans.jl"); - N = N, tspan = tspan, accuracy_order = accuracy_order, - saveat = saveat) - for (j, x) in enumerate(x_values) - index = argmin(abs.(DispersiveShallowWater.grid(semi) .- x)) - title = "x = $(round(DispersiveShallowWater.grid(semi)[index], digits = 4))" - plot!(semi => sol, x, conversion = waterheight_total, subplot = j, - xlim = tlims[j], ylim = ylim, plot_title = "", title = title, - legend = nothing, yticks = yticks, linewidth = 2, titlefontsize = 10, - label = "p = $accuracy_order ", linestyle = linestyles[i]) - end - end - - plot!(subplot = 5, legend = (0.82, -1.0), legend_column = 3, legendfontsize = 8, - bottom_margin = 10 * Plots.mm) - savefig(joinpath(OUT_DINGEMANS, "waterheight_at_x_accuracy_order.pdf")) -end - -# Plots of total waterheight for Svärd-Kalisch equations at different points in space and different types of solvers -function fig_11() - ylim = (0.75, 0.85) - yticks = [0.76, 0.78, 0.8, 0.82, 0.84] - x_values = [3.04, 9.44, 20.04, 26.04, 30.44, 37.04] - tlims = [ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ] - plot(layout = (3, 2)) - - N = 512 - tspan = (0.0, 70.0) - saveat = range(tspan..., length = 1000) - accuracy_order = 4 - linestyles = [:solid, :dash, :dot] - - coordinates_min = -138.0 - coordinates_max = 46.0 - p = 3 # N needs to be divisible by p + 1 - D_legendre = legendre_derivative_operator(-1.0, 1.0, p + 1) - uniform_mesh = UniformPeriodicMesh1D(coordinates_min, coordinates_max, div(N, p + 1)) - D1 = couple_discontinuously(D_legendre, uniform_mesh) - D_pl = couple_discontinuously(D_legendre, uniform_mesh, Val(:plus)) - D_min = couple_discontinuously(D_legendre, uniform_mesh, Val(:minus)) - D2 = sparse(D_pl) * sparse(D_min) - solver_DG = Solver(D1, D2) - - p = 4 # N needs to be divisible by p - D_legendre = legendre_derivative_operator(-1.0, 1.0, p + 1) - uniform_mesh = UniformPeriodicMesh1D(coordinates_min, coordinates_max, div(N, p)) - D1 = couple_continuously(D_legendre, uniform_mesh) - D2_legendre = legendre_second_derivative_operator(-1.0, 1.0, p + 1) - D2 = couple_continuously(D2_legendre, uniform_mesh) - solver_CG = Solver(D1, D2) - - solvers = [solver_DG, :none, solver_CG] - labels = ["DG ", "FD ", "CG "] - - for (i, solver) in enumerate(solvers) - if solver == :none - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans.jl"); - N = N, tspan = tspan, accuracy_order = accuracy_order, - saveat = saveat) - else - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans.jl"); - N = N, tspan = tspan, accuracy_order = accuracy_order, - saveat = saveat, solver = solvers[i]) - end - for (j, x) in enumerate(x_values) - index = argmin(abs.(DispersiveShallowWater.grid(semi) .- x)) - title = "x = $(round(DispersiveShallowWater.grid(semi)[index], digits = 4))" - plot!(semi => sol, x, conversion = waterheight_total, subplot = j, - xlim = tlims[j], ylim = ylim, plot_title = "", title = title, - legend = nothing, yticks = yticks, linewidth = 2, titlefontsize = 10, - label = labels[i], linestyle = linestyles[i]) - end - end - - plot!(subplot = 5, legend = (0.86, -1.0), legend_column = 3, legendfontsize = 8, - bottom_margin = 10 * Plots.mm) - savefig(joinpath(OUT_DINGEMANS, "waterheight_at_x_solver_types.pdf")) -end - -# Plot solution at different points in space and invariants for entropy conservative and dissipative schemes -function fig_12_13() - ylim = (0.75, 0.85) - yticks = [0.76, 0.78, 0.8, 0.82, 0.84] - x_values = [3.04, 9.44, 20.04, 26.04, 30.44, 37.04] - tlims = [ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ] - p1 = plot(layout = (3, 2)) - - N = 512 - tspan = (0.0, 70.0) - saveat = range(tspan..., length = 1000) - accuracy_order = 4 - linestyles = [:solid, :dash, :dot] - linewidth = 2 - titlefontsize = 10 - - labels = ["EC baseline", "EC relaxation ", "ED upwind"] - - function plot_at_x(semi, sol, i) - for (j, x) in enumerate(x_values) - index = argmin(abs.(DispersiveShallowWater.grid(semi) .- x)) - title = "x = $(round(DispersiveShallowWater.grid(semi)[index], digits = 4))" - plot!(p1, semi => sol, x, conversion = waterheight_total, subplot = j, - xlim = tlims[j], ylim = ylim, plot_title = "", title = title, - legend = nothing, yticks = yticks, linewidth = linewidth, - titlefontsize = titlefontsize, - label = labels[i], linestyle = linestyles[i]) - end - end - - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, "svaerd_kalisch_1d_dingemans.jl"); - N = N, tspan = tspan, accuracy_order = accuracy_order, saveat = saveat) - plot_at_x(semi, sol, 1) - p2 = plot(analysis_callback, title = labels[1], legend = :none, - linestyles = [:solid :dash :dot], - linewidth = linewidth, layout = 3, subplot = 1, titlefontsize = titlefontsize) - - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans_relaxation.jl"); - N = N, tspan = tspan, accuracy_order = accuracy_order, saveat = saveat) - plot_at_x(semi, sol, 2) - plot!(p2, analysis_callback, title = labels[2], legend = :none, - linestyles = [:solid :dash :dot], - linewidth = linewidth, subplot = 2, titlefontsize = titlefontsize) - - trixi_include(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans_upwind.jl"); - N = N, tspan = tspan, accuracy_order = accuracy_order, saveat = saveat) - plot_at_x(semi, sol, 3) - plot!(p2, analysis_callback, title = labels[3], legend = :none, - linestyles = [:solid :dash :dot], - linewidth = linewidth, subplot = 3, titlefontsize = titlefontsize) - - plot!(p1, subplot = 5, legend = (0.55, -1.1), legend_column = 3, legendfontsize = 8, - bottom_margin = 10 * Plots.mm) - plot!(p2, subplot = 3, legend = (1.3, 0.6), legendfontsize = 8) - savefig(p1, joinpath(OUT_DINGEMANS, "waterheight_at_x_ec.pdf")) - savefig(p2, joinpath(OUT_DINGEMANS, "invariants_ec.pdf")) -end - -fig_1() -fig_2() -fig_3() -fig_4_5_6() -fig_7() -# fig_orders_different_stencils() -fig_8() -# fig_condition_number() -fig_9() -fig_10() -fig_11() -fig_12_13() diff --git a/visualization/elixir_shallowwater_1d_dingemans.jl b/visualization/elixir_shallowwater_1d_dingemans.jl deleted file mode 100644 index 87e83522..00000000 --- a/visualization/elixir_shallowwater_1d_dingemans.jl +++ /dev/null @@ -1,59 +0,0 @@ -using Trixi -using OrdinaryDiffEq - -equations = ShallowWaterEquations1D(gravity_constant = 9.81, H0 = 0.8) - -function initial_condition_dingemans_trixi(x, t, equations::ShallowWaterEquations1D) - eta0 = 0.8 - A = 0.02 - # omega = 2*pi/(2.02*sqrt(2)) - k = 0.8406220896381442 # precomputed result of find_zero(k -> omega^2 - equations.gravity * k * tanh(k * eta0), 1.0) using Roots.jl - if x[1] < -30.5 * pi / k || x[1] > -8.5 * pi / k - h = 0.0 - else - h = A * cos(k * x[1]) - end - v = sqrt(equations.gravity / k * tanh(k * eta0)) * h / eta0 - if x[1] < 11.01 || x[1] >= 33.07 - b = 0.0 - elseif 11.01 <= x[1] && x[1] < 23.04 - b = 0.6 * (x[1] - 11.01) / (23.04 - 11.01) - elseif 23.04 <= x[1] && x[1] < 27.04 - b = 0.6 - elseif 27.04 <= x[1] && x[1] < 33.07 - b = 0.6 * (33.07 - x[1]) / (33.07 - 27.04) - else - error("should not happen") - end - eta = h + eta0 - D = -b - return Trixi.prim2cons(SVector(eta, v, b), equations) -end - -initial_condition = initial_condition_dingemans_trixi - -volume_flux = (flux_wintermeyer_etal, flux_nonconservative_wintermeyer_etal) -surface_flux = (flux_fjordholm_etal, flux_nonconservative_fjordholm_etal) -solver = DGSEM(polydeg = 3, surface_flux = surface_flux, - volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) - -coordinates_min = -138.0 -coordinates_max = 46.0 -mesh = TreeMesh(coordinates_min, coordinates_max, - initial_refinement_level = 7, - n_cells_max = 10_000) - -semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) -tspan = (0.0, 70.0) -ode = Trixi.semidiscretize(semi, tspan) - -summary_callback = SummaryCallback() - -analysis_callback = Trixi.AnalysisCallback(semi, interval = 100) - -callbacks = CallbackSet(summary_callback, analysis_callback) - -saveat = range(tspan..., length = 500) -sol = solve(ode, Tsit5(), reltol = 1e-7, abstol = 1e-7, - save_everystep = false, callback = callbacks, saveat = saveat); -summary_callback() # print the timer summary diff --git a/visualization/plot_examples.jl b/visualization/plot_examples.jl deleted file mode 100644 index 58e2adb8..00000000 --- a/visualization/plot_examples.jl +++ /dev/null @@ -1,211 +0,0 @@ -# This script solves all the examples in `examples_dir()` and creates a .gif of the solution -# as well as some additional plots. All plots are saved in a directory `out/` and -# subdirectories therein. - -using DispersiveShallowWater -using Plots - -# Use a macro to avoid world age issues when defining new initial conditions etc. -# inside an example. -macro plot_example(filename, args...) - local ylims_gif = get_kwarg(args, :ylims_gif, nothing) - local ylims_x = get_kwarg(args, :ylims_x, nothing) - local x_values = get_kwarg(args, :x_values, []) - local tlims = get_kwarg(args, :tlims, []) - - local kwargs = Pair{Symbol, Any}[] - for arg in args - if (arg.head == :(=) && !(arg.args[1] in (:ylims_gif, :ylims_x, :x_values, :tlims))) - push!(kwargs, Pair(arg.args...)) - end - end - - quote - trixi_include(joinpath(examples_dir(), $filename); $kwargs...) - elixirname = splitext(basename($filename))[1] - outdir = joinpath("out", dirname($filename), elixirname) - ispath(outdir) || mkpath(outdir) - - # Plot solution - anim = @animate for step in 1:length(sol.u) - plot(semi => sol, plot_initial = true, step = step, ylims = $ylims_gif) - end - gif(anim, joinpath(outdir, "solution.gif"), fps = 25) - - # Plot error in invariants - plot(analysis_callback) - savefig(joinpath(outdir, "invariants.pdf")) - - # Plot at different x values over time - @assert size($x_values) == size($tlims) - for (i, x) in enumerate($x_values) - plot(semi => sol, x, xlim = $tlims[i], ylims = $ylims_x) - savefig(joinpath(outdir, "solution_at_x_" * string(x) * ".pdf")) - end - end -end - -# Get the first value assigned to `keyword` in `args` and return `default_value` -# if there are no assignments to `keyword` in `args`. -function get_kwarg(args, keyword, default_value) - val = default_value - for arg in args - if arg.head == :(=) && arg.args[1] == keyword - val = arg.args[2] - break - end - end - return val -end - -const EXAMPLES_DIR_BBMBBM = "bbm_bbm_1d" -const EXAMPLES_DIR_BBMBBM_VARIABLE = "bbm_bbm_variable_bathymetry_1d" -const EXAMPLES_DIR_SVAERD_KALISCH = "svaerd_kalisch_1d" - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using periodic SBP operators -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_basic.jl"), - ylims_gif=[(-8, 4) :auto], tspan=(0.0, 50.0)) - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using discontinuously coupled Legendre SBP operators -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_dg.jl"), - ylims_gif=[(-4, 2) :auto]) - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using periodic SBP operators and relaxation, is energy-conservative -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_relaxation.jl"), - ylims_gif=[(-8, 4) (-10, 30)], - tspan=(0.0, 30.0)) - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using periodic SBP operators. Uses the BBM-BBM equations with variable bathymetry, but sets the bathymetry -# as a constant. Should give the same result as "bbm_bbm_1d_basic.jl" -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_basic.jl"), - ylims_gif=[(-8, 4) :auto], - tspan=(0.0, 50.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height -# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference SBP operators. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_relaxation.jl"), - ylims_gif=[(-1.5, 6.0) (-10.0, 10.0)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height -# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution -# is energy-conservative. Uses upwind discontinuously coupled SBP operators. -@plot_elixir(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_dg_upwind_relaxation.jl"), - ylims_gif=[(-1.5, 6.0) (-10.0, 10.0)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height -# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference discontinuously coupled SBP operators. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_upwind_relaxation.jl"), - ylims_gif=[(-1.5, 6.0) (-10.0, 10.0)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a constant water height -# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be -# (exactly) constant in time. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_well_balanced.jl"), - ylims_gif=[(2.0 - 1e-3, 2.0 + 1e-3) (-1e-3, 1e-3)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_dingemans.jl"), - ylims_gif=[(-0.1, 0.9) (-0.3, 0.3)], - ylims_x=[:auto :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional equations from Svärd and Kalisch with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans.jl"), - ylims_gif=[(-0.1, 0.9) (-0.3, 0.3)], - ylims_x=[:auto :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional equations from Svärd and Kalisch with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans_upwind.jl"), - ylims_gif=[(-0.1, 0.9) (-0.3, 0.3)], - ylims_x=[:auto :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional equations from Svärd and Kalisch with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. Relaxation is used -# to preserve the modified entropy. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans_relaxation.jl"), - ylims_gif=[(-0.1, 0.9) (-0.3, 0.3)], - ylims_x=[:auto :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional Svärd-Kalisch equations with a constant water height -# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be -# (exactly) constant in time. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_well_balanced.jl"), - ylims=[(2.0 - 1e-3, 2.0 + 1e-3) (-1e-3, 1e-3)], - tspan=(0.0, 10.0))