From 6577a58b2cbce7abda7b98b1b2e2ca5643ff65f0 Mon Sep 17 00:00:00 2001 From: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> Date: Fri, 9 Aug 2024 07:19:30 +0200 Subject: [PATCH] add references to semidiscretizations in docstrings (#128) --- src/equations/bbm_bbm_1d.jl | 10 +++++++--- src/equations/bbm_bbm_variable_bathymetry_1d.jl | 9 +++++++-- src/equations/svaerd_kalisch_1d.jl | 13 ++++++++++--- 3 files changed, 24 insertions(+), 8 deletions(-) diff --git a/src/equations/bbm_bbm_1d.jl b/src/equations/bbm_bbm_1d.jl index 0a8d5af6..bd604107 100644 --- a/src/equations/bbm_bbm_1d.jl +++ b/src/equations/bbm_bbm_1d.jl @@ -12,11 +12,15 @@ The unknown quantities of the BBM-BBM equations are the total water height ``\et The gravitational constant is denoted by `g` and the constant bottom topography (bathymetry) ``b = \eta_0 - D``. The water height above the bathymetry is therefore given by ``h = \eta - \eta_0 + D``. The BBM-BBM equations are only implemented for ``\eta_0 = 0``. -One reference for the BBM-BBM system can be found in +One reference for the BBM-BBM system can be found in Bona et al. (1998). +The semidiscretization implemented here conserves the mass and the energy and is developed in Ranocha et al. (2020). + - Jerry L. Bona, Min Chen (1998) A Boussinesq system for two-way propagation of nonlinear dispersive waves [DOI: 10.1016/S0167-2789(97)00249-2](https://doi.org/10.1016/S0167-2789(97)00249-2) - +- Hendrik Ranocha, Dimitrios Mitsotakis, David I. Ketcheson (2020) + A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations + [DOI: 10.4208/cicp.OA-2020-0119](https://doi.org/10.4208/cicp.OA-2020-0119) """ struct BBMBBMEquations1D{RealT <: Real} <: AbstractBBMBBMEquations{1, 2} gravity::RealT # gravitational constant @@ -213,7 +217,7 @@ function rhs!(dq, q, t, mesh, equations::BBMBBMEquations1D, initial_condition, return nothing end -# Discretization that conserves the mass (for eta) and the energy for periodic boundary conditions, see +# Discretization that conserves the mass (for eta) and the energy for reflecting boundary conditions, see # - Hendrik Ranocha, Dimitrios Mitsotakis and David I. Ketcheson (2020) # A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations # [DOI: 10.4208/cicp.OA-2020-0119](https://doi.org/10.4208/cicp.OA-2020-0119) diff --git a/src/equations/bbm_bbm_variable_bathymetry_1d.jl b/src/equations/bbm_bbm_variable_bathymetry_1d.jl index 23171c49..efadd002 100644 --- a/src/equations/bbm_bbm_variable_bathymetry_1d.jl +++ b/src/equations/bbm_bbm_variable_bathymetry_1d.jl @@ -12,11 +12,16 @@ The unknown quantities of the BBM-BBM equations are the total water height ``\et The gravitational constant is denoted by `g` and the bottom topography (bathymetry) ``b = \eta_0 - D``. The water height above the bathymetry is therefore given by ``h = \eta - \eta_0 + D``. The BBM-BBM equations are only implemented for ``\eta_0 = 0``. -One reference for the BBM-BBM system with spatially varying bathymetry can be found in +One reference for the BBM-BBM system with spatially varying bathymetry can be found in Israwi et al. (2022). +The semidiscretization implemented here conserves the mass and the energy, is well-balanced for the lake-at-rest state, +and is developed in Lampert and Ranocha (2024). + - Samer Israwi, Henrik Kalisch, Theodoros Katsaounis, Dimitrios Mitsotakis (2022) A regularized shallow-water waves system with slip-wall boundary conditions in a basin: theory and numerical analysis [DOI: 10.1088/1361-6544/ac3c29](https://doi.org/10.1088/1361-6544/ac3c29) - +- Joshua Lampert, Hendrik Ranocha (2024) + Structure-Preserving Numerical Methods for Two Nonlinear Systems of Dispersive Wave Equations + [DOI: 10.48550/arXiv.2402.16669](https://doi.org/10.48550/arXiv.2402.16669) """ struct BBMBBMVariableEquations1D{RealT <: Real} <: AbstractBBMBBMEquations{1, 3} gravity::RealT # gravitational constant diff --git a/src/equations/svaerd_kalisch_1d.jl b/src/equations/svaerd_kalisch_1d.jl index cd2e6a63..ae20581b 100644 --- a/src/equations/svaerd_kalisch_1d.jl +++ b/src/equations/svaerd_kalisch_1d.jl @@ -1,5 +1,5 @@ @doc raw""" - SvärdKalischEquations1D(gravity, eta0 = 1.0, alpha = 0.0, beta = 0.2308939393939394, gamma = 0.04034343434343434) + SvaerdKalischEquations1D(gravity, eta0 = 1.0, alpha = 0.0, beta = 0.2308939393939394, gamma = 0.04034343434343434) Dispersive system by Svärd and Kalisch in one spatial dimension with spatially varying bathymetry. The equations are given in conservative variables by ```math @@ -20,11 +20,18 @@ The unknown quantities of the Svärd-Kalisch equations are the total water heigh The gravitational constant is denoted by `g` and the bottom topography (bathymetry) ``b = \eta_0 - D``. The water height above the bathymetry is therefore given by ``h = \eta - \eta_0 + D``. -The equations by Svärd and Kalisch are presented and analyzed in +`SvärdKalischEquations1D` is an alias for `SvaerdKalischEquations1D`. + +The equations by Svärd and Kalisch are presented and analyzed in Svärd and Kalisch (2023). +The semidiscretization implemented here conserves the mass and the energy, is well-balanced for the lake-at-rest state, +and is developed in Lampert and Ranocha (2024). + - Magnus Svärd, Henrik Kalisch (2023) A novel energy-bounded Boussinesq model and a well-balanced and stable numerical discretization [arXiv: 2302.09924](https://arxiv.org/abs/2302.09924) - +- Joshua Lampert, Hendrik Ranocha (2024) + Structure-Preserving Numerical Methods for Two Nonlinear Systems of Dispersive Wave Equations + [DOI: 10.48550/arXiv.2402.16669](https://doi.org/10.48550/arXiv.2402.16669) """ struct SvaerdKalischEquations1D{RealT <: Real} <: AbstractSvaerdKalischEquations{1, 3} gravity::RealT # gravitational constant