diff --git a/create_figures.jl b/create_figures.jl index ff4f23ce..c4d2a2a5 100644 --- a/create_figures.jl +++ b/create_figures.jl @@ -1,207 +1,142 @@ using DispersiveShallowWater using Plots +using LaTeXStrings -# Use a macro to avoid world age issues when defining new initial conditions etc. -# inside an example. -macro plot_example(filename, args...) - local ylims_gif = get_kwarg(args, :ylims_gif, nothing) - local ylims_x = get_kwarg(args, :ylims_x, nothing) - local x_values = get_kwarg(args, :x_values, []) - local tlims = get_kwarg(args, :tlims, []) - - local kwargs = Pair{Symbol, Any}[] - for arg in args - if (arg.head == :(=) && !(arg.args[1] in (:ylims_gif, :ylims_x, :x_values, :tlims))) - push!(kwargs, Pair(arg.args...)) - end +const OUT = "out/" +ispath(OUT) || mkpath(OUT) +const EXAMPLES_DIR_BBMBBM = "bbm_bbm_1d" + +# Plot of bathymetry and waterheight +function fig_1() + L = 1.0 + n = 100 + x = LinRange(0.0, L, n) + fontsize = 20 + + # just pick some function for b and eta that look nice + H = 1.012 + + b(x) = x * cos.(3 * pi * x) + H + plot(x, b, color = :gray, fill = (0, 0.8, :gray), fillstyle = :/, linewidth = 3, legend = nothing, ticks = nothing, border = :none) + + eta(x) = x / (x^2 + 1) * sin(2 * pi * x) + H + 1.5 + plot!(x, eta, color = :blue, fill = (b.(x), 0.4, :blue), linewidth = 3) + + x1 = 0.2 + plot!([x1, x1], [b(x1), eta(x1)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), annotation = (x1 - 0.08, (eta(x1) + b(x1))/ 2, text(L"h(t, x)", fontsize)), linewidth = 2) + x2 = 0.4 + plot!([x2, x2], [0.0, b(x2)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), annotation = (x2 + 0.06, b(x2) / 2, text(L"b(x)", fontsize)), linewidth = 2) + x3 = 0.8 + plot!([x3, x3], [0.0, eta(x3)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), annotation = (x3 - 0.08, eta(x3) / 2, text(L"\eta(t, x)", fontsize)), linewidth = 2) + + savefig(joinpath(OUT, "bathymetry.pdf")) +end + +# Plot of diserpersion relations +function fig_2() + linewidth = 2 + markersize = 5 + + h0 = 1.0 + g = 1.0 + c0 = sqrt(g * h0) + + k = 0.01:0.5:(8*pi) + k_zoom = 0.01:0.3:pi + ylim = (0.0, 1.1) + + + omega_euler(k) = sqrt(g * k) * sqrt(tanh(h0 * k)) + c_euler(k) = omega_euler(k) / k + plot(k, c_euler.(k) ./ c0, label = "Euler", ylim = ylim, xguide = L"k", yguide = L"c/c_0", linewidth = linewidth, markershape = :circle, markersize = markersize) + plot!(k_zoom, c_euler.(k_zoom) ./ c0, ylims = (0.54, 1.0), inset = bbox(0.35, 0.1, 0.35, 0.3), subplot = 2, legend = nothing, linewidth = linewidth, markershape = :circle, markersize = markersize) + + function plot_dispersion_relation(omega, label, markershape) + c(k) = omega(k) / k + plot!(k, c.(k) ./ c0, label = label, linewidth = linewidth, markershape = markershape, markersize = markersize) + plot!(k_zoom, c.(k_zoom) ./ c0, subplot = 2, linewidth = linewidth, markershape = markershape, markersize = markersize) end - quote - trixi_include(joinpath(examples_dir(), $filename); $kwargs...) - elixirname = splitext(basename($filename))[1] - outdir = joinpath("out", dirname($filename), elixirname) - ispath(outdir) || mkpath(outdir) - - # Plot solution - anim = @animate for step in 1:length(sol.u) - plot(semi => sol, plot_initial = true, step = step, yli = $ylims_gif) - end - gif(anim, joinpath(outdir, "solution.gif"), fps = 25) - - # Plot error in invariants - plot(analysis_callback) - savefig(joinpath(outdir, "invariants.pdf")) - - # Plot at different x values over time - @assert size($x_values) == size($tlims) - for (i, x) in enumerate($x_values) - plot(semi => sol, x, xlim = $tlims[i], yli = $ylims_x) - savefig(joinpath(outdir, "solution_at_x_" * string(x) * ".pdf")) - end + omega_bbmbbm_(k, d0) = sqrt(g * h0) * k / (1 + 1/6*(d0 * k)^2) + omega_bbmbbm(k) = omega_bbmbbm_(k, h0) + plot_dispersion_relation(omega_bbmbbm, "BBM-BBM", :cross) + + + alpha_set1 = -1/3 * c0 * h0^2 + beta_set1 = 0.0 * h0^3 + gamma_set1 = 0.0 * c0 * h0^3 + + alpha_set2 = 0.0004040404040404049 * c0 * h0^2 + beta_set2 = 0.49292929292929294 * h0^3 + gamma_set2 = 0.15707070707070708 * c0 * h0^3 + + alpha_set3 = 0.0 * c0 * h0^2 + beta_set3 = 0.27946992481203003 * h0^3 + gamma_set3 = 0.0521077694235589 * c0 * h0^3 + + alpha_set4 = 0.0 * c0 * h0^2 + beta_set4 = 0.2308939393939394 * h0^3 + gamma_set4 = 0.04034343434343434 * c0 * h0^3 + + function char_equation(alpha, beta, gamma, k) + a = (1 + beta/h0*k^2) + b = (-alpha - beta*alpha/h0*k^2 - gamma/h0)*k^3 + c = -g*h0*k^2 + gamma*alpha/h0*k^6 + omega1 = (-b + sqrt(b^2 - 4*a*c))/(2*a) +# omega2 = (-b - sqrt(b^2 - 4*a*c))/(2*a) + return omega1 end + + omega_set1(k) = char_equation(alpha_set1, beta_set1, gamma_set1, k) + plot_dispersion_relation(omega_set1, "S.-K. set 1", :rtriangle) + + omega_set2(k) = char_equation(alpha_set2, beta_set2, gamma_set2, k) + plot_dispersion_relation(omega_set2, "S.-K. set 2", :star5) + + omega_set3(k) = char_equation(alpha_set3, beta_set3, gamma_set3, k) + plot_dispersion_relation(omega_set3, "S.-K. set 3", :star8) + + omega_set4(k) = char_equation(alpha_set4, beta_set4, gamma_set4, k) + plot_dispersion_relation(omega_set4, "S.-K. set 4", :diamond) + + savefig(joinpath(OUT, "dispersion_relations.pdf")) end -# Get the first value assigned to `keyword` in `args` and return `default_value` -# if there are no assignments to `keyword` in `args`. -function get_kwarg(args, keyword, default_value) - val = default_value - for arg in args - if arg.head == :(=) && arg.args[1] == keyword - val = arg.args[2] - break - end +# Plot convergence orders for baseline and relaxation +function fig_3() + tspan = (0.0, 10.0) + accuracy_orders = [2, 4, 6, 8] + styles = [:dash, :dot, :dashdot, :dashdotdot] + iters = [4, 4, 4, 3] + initial_Ns = [128, 128, 128, 128] + + all_Ns = minimum(initial_Ns) * 2 .^ (0:(maximum(iters) - 1)) + + plot([], label = :none, xscale = :log2, yscale = :log10, xticks = all_Ns, xlabel = "N", ylabel = L"||\eta - \eta_{ana}||_2 + ||v - v_{ana}||_2") + for i in 1:length(accuracy_orders) + Ns = initial_Ns[i] * 2 .^ (0:(iters[i] - 1)) + _, errormatrix = convergence_test("examples/bbm_bbm_1d/bbm_bbm_1d_basic.jl", iters[i]; N = initial_Ns[i], tspan = tspan, accuracy_order = accuracy_orders[i]) + # Use sum over all L^2-errors for all variables, i.e. ||η - η_ana||_2 + ||v - v_ana||_2 + l2_err = sum(errormatrix[:l2], dims=2) + eocs = log.(l2_err[2:end] ./ l2_err[1:(end - 1)]) ./ log(0.5) + eoc_mean = round(sum(eocs) / length(eocs), digits = 2) + plot!(Ns, l2_err, style = styles[i], label = "p = $accuracy_order, EOC: $eoc_mean") + end + savefig(joinpath(OUT, "orders.pdf")) + + plot([], label = :none, xscale = :log2, yscale = :log10, xticks = all_Ns, xlabel = "N", ylabel = L"||\eta - \eta_{ana}||_2 + ||v - v_{ana}||_2") + for i in 1:length(accuracy_orders) + Ns = initial_Ns[i] * 2 .^ (0:(iters[i] - 1)) + _, errormatrix = convergence_test("examples/bbm_bbm_1d/bbm_bbm_1d_relaxation.jl", iters[i]; N = initial_Ns[i], tspan = tspan, accuracy_order = accuracy_orders[i]) + # Use sum over all L^2-errors for all variables, i.e. ||η - η_ana||_2 + ||v - v_ana||_2 + l2_err = sum(errormatrix[:l2], dims=2) + eocs = log.(l2_err[2:end] ./ l2_err[1:(end - 1)]) ./ log(0.5) + eoc_mean = round(sum(eocs) / length(eocs), digits = 2) + plot!(Ns, l2_err, style = styles[i], label = "p = $accuracy_order, EOC: $eoc_mean") end - return val + savefig(joinpath(OUT, "orders_relaxation.pdf")) end -const EXAMPLES_DIR_BBMBBM = "bbm_bbm_1d" -const EXAMPLES_DIR_BBMBBM_VARIABLE = "bbm_bbm_variable_bathymetry_1d" -const EXAMPLES_DIR_SVAERD_KALISCH = "svaerd_kalisch_1d" - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using periodic SBP operators -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_basic.jl"), - ylims_gif=[(-8, 4), :auto], tspan=(0.0, 50.0)) - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using discontinuously coupled Legendre SBP operators -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_dg.jl"), - ylims_gif=[(-4, 2), :auto]) - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using periodic SBP operators and relaxation, is energy-conservative -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_relaxation.jl"), - ylims_gif=[(-8, 4), (-10, 30)], - tspan=(0.0, 30.0)) - -############################################################################### -# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions -# using periodic SBP operators. Uses the BBM-BBM equations with variable bathymetry, but sets the bathymetry -# as a constant. Should give the same result as "bbm_bbm_1d_basic.jl" -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_basic.jl"), - ylims_gif=[(-8, 4), :auto], - tspan=(0.0, 50.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height -# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference SBP operators. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_relaxation.jl"), - ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height -# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution -# is energy-conservative. Uses upwind discontinuously coupled SBP operators. -@plot_elixir(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_dg_upwind_relaxation.jl"), - ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height -# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference discontinuously coupled SBP operators. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_upwind_relaxation.jl"), - ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with a constant water height -# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be -# (exactly) constant in time. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_well_balanced.jl"), - ylims_gif=[(2.0 - 1e-3, 2.0 + 1e-3), (-1e-3, 1e-3)], - tspan=(0.0, 10.0)) - -############################################################################### -# One-dimensional BBM-BBM equations with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. -@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, - "bbm_bbm_variable_bathymetry_1d_dingemans.jl"), - ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], - ylims_x=[:auto, :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional equations from Svärd and Kalisch with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans.jl"), - ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], - ylims_x=[:auto, :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional equations from Svärd and Kalisch with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans_upwind.jl"), - ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], - ylims_x=[:auto, :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional equations from Svärd and Kalisch with initial condition that models -# a wave make. This setup comes from experiments by W. M. Dingemans. Relaxation is used -# to preserve the modified entropy. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_dingemans_relaxation.jl"), - ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], - ylims_x=[:auto, :auto], - x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], - tlims=[ - (15.0, 45.0), - (19.0, 48.0), - (25.0, 52.0), - (30.0, 60.0), - (33.0, 61.0), - (35.0, 65.0), - ], - tspan=(0.0, 70.0)) - -############################################################################### -# One-dimensional Svärd-Kalisch equations with a constant water height -# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution -# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be -# (exactly) constant in time. -@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, - "svaerd_kalisch_1d_well_balanced.jl"), - ylims=[(2.0 - 1e-3, 2.0 + 1e-3), (-1e-3, 1e-3)], - tspan=(0.0, 10.0)) +fig_1() +fig_2() +fig_3() diff --git a/docs/src/index.md b/docs/src/index.md index 64def00d..fd71de78 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -5,7 +5,12 @@ [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) [![License: MIT](https://img.shields.io/badge/License-MIT-success.svg)](https://opensource.org/licenses/MIT) -[**DispersiveShallowWater.jl**](https://github.com/JoshuaLampert/DispersiveShallowWater.jl) is a [Julia](https://julialang.org/) package that implements structure-preserving numerical methods for dispersive shallow water models. To date, it provides provably conservative, entropy-conserving and well-balanced numerical schemes of the [BBM-BBM equations with varying bottom topography](https://iopscience.iop.org/article/10.1088/1361-6544/ac3c29), and the [dispersive shallow water model proposed by Magnus Svärd and Henrik Kalisch](https://arxiv.org/abs/2302.09924). The semidiscretizations are based on summation by parts (SBP) operators, which are implemented in [SummationByPartsOperators.jl](https://github.com/ranocha/SummationByPartsOperators.jl/). In order to obtain fully discrete schemes, the time integration methods from [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl) are used to solve the resulting ordinary differential equations. Fully discrete entropy-conservative methods can be obtained by using the [relaxation method](https://epubs.siam.org/doi/10.1137/19M1263662) provided by DispersiveShallowWater.jl. +[**DispersiveShallowWater.jl**](https://github.com/JoshuaLampert/DispersiveShallowWater.jl) is a [Julia](https://julialang.org/) package that implements structure-preserving numerical methods for dispersive shallow water models. To date, it provides provably conservative, entropy-conserving and well-balanced numerical schemes for two dispersive shallow water models: + +* the [BBM-BBM equations with varying bottom topography](https://iopscience.iop.org/article/10.1088/1361-6544/ac3c29), +* the [dispersive shallow water model proposed by Magnus Svärd and Henrik Kalisch](https://arxiv.org/abs/2302.09924). + +The semidiscretizations are based on summation by parts (SBP) operators, which are implemented in [SummationByPartsOperators.jl](https://github.com/ranocha/SummationByPartsOperators.jl/). In order to obtain fully discrete schemes, the time integration methods from [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl) are used to solve the resulting ordinary differential equations. Fully discrete entropy-conservative methods can be obtained by using the [relaxation method](https://epubs.siam.org/doi/10.1137/19M1263662) provided by DispersiveShallowWater.jl. # Installation diff --git a/docs/src/overview.md b/docs/src/overview.md index 46fb6b1c..10b19023 100644 --- a/docs/src/overview.md +++ b/docs/src/overview.md @@ -119,7 +119,7 @@ end gif(anim, "shoaling_solution.gif", fps = 25) ``` -It is also possible to plot the solution variables at a fixed spatial point over time by calling `plot(semi => sol, x)` for some `x`-value, see [create_figures.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/create_figures.jl) for some examples. +It is also possible to plot the solution variables at a fixed spatial point over time by calling `plot(semi => sol, x)` for some `x`-value, see [plot_examples.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/plot_examples.jl) for some examples. Often, it is interesting to have a look at how the quantities that are recorded by the `AnalysisCallback` evolve in time. To this end, you can `plot` the `AnalysisCallback` by @@ -224,7 +224,7 @@ For more details see also the [documentation of SummationByPartsOperators.jl](ht Some more examples sorted by the simulated equations can be found in the [examples/](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/tree/main/examples) subdirectory. Especially, in [examples/svaerd\_kalisch\_1d/](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/tree/main/examples/svaerd_kalisch_1d) you can find Julia scripts that solve the [`SvaerdKalischEquations1D`](@ref) that were not covered in this tutorial. The same steps as described above, however, apply in the same way to these equations. Attention must be paid for these equations because they do not conserve the classical total entropy ``\mathcal E``, but a modified entropy ``\hat{\mathcal E}``, available as [`entropy_modified`](@ref). -More examples, especially focussing on plotting, can be found in the script [create_figures.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/create_figures.jl). +More examples, especially focussing on plotting, can be found in the scripts [create_figures.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/create_figures.jl) and [plot_examples.jl](https://github.com/JoshuaLampert/DispersiveShallowWater.jl/blob/main/plot_examples.jl). ## References diff --git a/plot_examples.jl b/plot_examples.jl new file mode 100644 index 00000000..dd03b6c3 --- /dev/null +++ b/plot_examples.jl @@ -0,0 +1,211 @@ +# This script solves all the examples in `examples_dir()` and creates a .gif of solution +# as well as some additional plots. All plots are saved in a directory `out/` and +# subdirectories therein. + +using DispersiveShallowWater +using Plots + +# Use a macro to avoid world age issues when defining new initial conditions etc. +# inside an example. +macro plot_example(filename, args...) + local ylims_gif = get_kwarg(args, :ylims_gif, nothing) + local ylims_x = get_kwarg(args, :ylims_x, nothing) + local x_values = get_kwarg(args, :x_values, []) + local tlims = get_kwarg(args, :tlims, []) + + local kwargs = Pair{Symbol, Any}[] + for arg in args + if (arg.head == :(=) && !(arg.args[1] in (:ylims_gif, :ylims_x, :x_values, :tlims))) + push!(kwargs, Pair(arg.args...)) + end + end + + quote + trixi_include(joinpath(examples_dir(), $filename); $kwargs...) + elixirname = splitext(basename($filename))[1] + outdir = joinpath("out", dirname($filename), elixirname) + ispath(outdir) || mkpath(outdir) + + # Plot solution + anim = @animate for step in 1:length(sol.u) + plot(semi => sol, plot_initial = true, step = step, yli = $ylims_gif) + end + gif(anim, joinpath(outdir, "solution.gif"), fps = 25) + + # Plot error in invariants + plot(analysis_callback) + savefig(joinpath(outdir, "invariants.pdf")) + + # Plot at different x values over time + @assert size($x_values) == size($tlims) + for (i, x) in enumerate($x_values) + plot(semi => sol, x, xlim = $tlims[i], yli = $ylims_x) + savefig(joinpath(outdir, "solution_at_x_" * string(x) * ".pdf")) + end + end +end + +# Get the first value assigned to `keyword` in `args` and return `default_value` +# if there are no assignments to `keyword` in `args`. +function get_kwarg(args, keyword, default_value) + val = default_value + for arg in args + if arg.head == :(=) && arg.args[1] == keyword + val = arg.args[2] + break + end + end + return val +end + +const EXAMPLES_DIR_BBMBBM = "bbm_bbm_1d" +const EXAMPLES_DIR_BBMBBM_VARIABLE = "bbm_bbm_variable_bathymetry_1d" +const EXAMPLES_DIR_SVAERD_KALISCH = "svaerd_kalisch_1d" + +############################################################################### +# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions +# using periodic SBP operators +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_basic.jl"), + ylims_gif=[(-8, 4), :auto], tspan=(0.0, 50.0)) + +############################################################################### +# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions +# using discontinuously coupled Legendre SBP operators +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_dg.jl"), + ylims_gif=[(-4, 2), :auto]) + +############################################################################### +# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions +# using periodic SBP operators and relaxation, is energy-conservative +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_relaxation.jl"), + ylims_gif=[(-8, 4), (-10, 30)], + tspan=(0.0, 30.0)) + +############################################################################### +# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions +# using periodic SBP operators. Uses the BBM-BBM equations with variable bathymetry, but sets the bathymetry +# as a constant. Should give the same result as "bbm_bbm_1d_basic.jl" +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, + "bbm_bbm_variable_bathymetry_1d_basic.jl"), + ylims_gif=[(-8, 4), :auto], + tspan=(0.0, 50.0)) + +############################################################################### +# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height +# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution +# is energy-conservative. Uses periodic finite difference SBP operators. +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, + "bbm_bbm_variable_bathymetry_1d_relaxation.jl"), + ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)], + tspan=(0.0, 10.0)) + +############################################################################### +# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height +# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution +# is energy-conservative. Uses upwind discontinuously coupled SBP operators. +@plot_elixir(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, + "bbm_bbm_variable_bathymetry_1d_dg_upwind_relaxation.jl"), + ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)], + tspan=(0.0, 10.0)) + +############################################################################### +# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height +# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution +# is energy-conservative. Uses periodic finite difference discontinuously coupled SBP operators. +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, + "bbm_bbm_variable_bathymetry_1d_upwind_relaxation.jl"), + ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)], + tspan=(0.0, 10.0)) + +############################################################################### +# One-dimensional BBM-BBM equations with a constant water height +# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution +# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be +# (exactly) constant in time. +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, + "bbm_bbm_variable_bathymetry_1d_well_balanced.jl"), + ylims_gif=[(2.0 - 1e-3, 2.0 + 1e-3), (-1e-3, 1e-3)], + tspan=(0.0, 10.0)) + +############################################################################### +# One-dimensional BBM-BBM equations with initial condition that models +# a wave make. This setup comes from experiments by W. M. Dingemans. +@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE, + "bbm_bbm_variable_bathymetry_1d_dingemans.jl"), + ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], + ylims_x=[:auto, :auto], + x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], + tlims=[ + (15.0, 45.0), + (19.0, 48.0), + (25.0, 52.0), + (30.0, 60.0), + (33.0, 61.0), + (35.0, 65.0), + ], + tspan=(0.0, 70.0)) + +############################################################################### +# One-dimensional equations from Svärd and Kalisch with initial condition that models +# a wave make. This setup comes from experiments by W. M. Dingemans. +@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, + "svaerd_kalisch_1d_dingemans.jl"), + ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], + ylims_x=[:auto, :auto], + x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], + tlims=[ + (15.0, 45.0), + (19.0, 48.0), + (25.0, 52.0), + (30.0, 60.0), + (33.0, 61.0), + (35.0, 65.0), + ], + tspan=(0.0, 70.0)) + +############################################################################### +# One-dimensional equations from Svärd and Kalisch with initial condition that models +# a wave make. This setup comes from experiments by W. M. Dingemans. +@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, + "svaerd_kalisch_1d_dingemans_upwind.jl"), + ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], + ylims_x=[:auto, :auto], + x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], + tlims=[ + (15.0, 45.0), + (19.0, 48.0), + (25.0, 52.0), + (30.0, 60.0), + (33.0, 61.0), + (35.0, 65.0), + ], + tspan=(0.0, 70.0)) + +############################################################################### +# One-dimensional equations from Svärd and Kalisch with initial condition that models +# a wave make. This setup comes from experiments by W. M. Dingemans. Relaxation is used +# to preserve the modified entropy. +@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, + "svaerd_kalisch_1d_dingemans_relaxation.jl"), + ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)], + ylims_x=[:auto, :auto], + x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04], + tlims=[ + (15.0, 45.0), + (19.0, 48.0), + (25.0, 52.0), + (30.0, 60.0), + (33.0, 61.0), + (35.0, 65.0), + ], + tspan=(0.0, 70.0)) + +############################################################################### +# One-dimensional Svärd-Kalisch equations with a constant water height +# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution +# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be +# (exactly) constant in time. +@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH, + "svaerd_kalisch_1d_well_balanced.jl"), + ylims=[(2.0 - 1e-3, 2.0 + 1e-3), (-1e-3, 1e-3)], + tspan=(0.0, 10.0)) diff --git a/src/util.jl b/src/util.jl index 9e822f21..5cc41d55 100644 --- a/src/util.jl +++ b/src/util.jl @@ -138,20 +138,20 @@ function convergence_test(mod::Module, example::AbstractString, iterations; kwar end # Use raw error values to compute EOC - analyze_convergence(errors, iterations, mod.semi) + analyze_convergence(errors, iterations, mod.semi, initial_N) end # Analyze convergence for any semidiscretization # Note: this intermediate method is to allow dispatching on the semidiscretization -function analyze_convergence(errors, iterations, semi::Semidiscretization) +function analyze_convergence(errors, iterations, semi::Semidiscretization, initial_N) _, equations, _, _ = mesh_equations_solver_cache(semi) variablenames = varnames(prim2prim, equations) - analyze_convergence(errors, iterations, variablenames) + analyze_convergence(errors, iterations, variablenames, initial_N) end # This method is called with the collected error values to actually compute and print the EOC function analyze_convergence(errors, iterations, - variablenames::Union{Tuple, AbstractArray}) + variablenames::Union{Tuple, AbstractArray}, initial_N) nvariables = length(variablenames) # Reshape errors to get a matrix where the i-th row represents the i-th iteration @@ -171,11 +171,12 @@ function analyze_convergence(errors, iterations, println(kind) for v in variablenames - @printf("%-20s", v) + @printf("%-25s", v) end println("") for k in 1:nvariables + @printf("%-5s", "N") @printf("%-10s", "error") @printf("%-10s", "EOC") end @@ -183,6 +184,7 @@ function analyze_convergence(errors, iterations, # Print errors for the first iteration for k in 1:nvariables + @printf("%-5d", initial_N) @printf("%-10.2e", error[1, k]) @printf("%-10s", "-") end @@ -191,6 +193,7 @@ function analyze_convergence(errors, iterations, # For the following iterations print errors and EOCs for j in 2:iterations for k in 1:nvariables + @printf("%-5d", initial_N * 2^(j - 1)) @printf("%-10.2e", error[j, k]) @printf("%-10.2f", eocs[kind][j - 1, k]) end