Skip to content

Commit

Permalink
restructure create_figures.jl
Browse files Browse the repository at this point in the history
  • Loading branch information
JoshuaLampert committed Sep 25, 2023
1 parent a1a0fb3 commit 4ea5e4e
Show file tree
Hide file tree
Showing 5 changed files with 358 additions and 204 deletions.
327 changes: 131 additions & 196 deletions create_figures.jl
Original file line number Diff line number Diff line change
@@ -1,207 +1,142 @@
using DispersiveShallowWater
using Plots
using LaTeXStrings

# Use a macro to avoid world age issues when defining new initial conditions etc.
# inside an example.
macro plot_example(filename, args...)
local ylims_gif = get_kwarg(args, :ylims_gif, nothing)
local ylims_x = get_kwarg(args, :ylims_x, nothing)
local x_values = get_kwarg(args, :x_values, [])
local tlims = get_kwarg(args, :tlims, [])

local kwargs = Pair{Symbol, Any}[]
for arg in args
if (arg.head == :(=) && !(arg.args[1] in (:ylims_gif, :ylims_x, :x_values, :tlims)))
push!(kwargs, Pair(arg.args...))
end
const OUT = "out/"
ispath(OUT) || mkpath(OUT)
const EXAMPLES_DIR_BBMBBM = "bbm_bbm_1d"

# Plot of bathymetry and waterheight
function fig_1()
L = 1.0
n = 100
x = LinRange(0.0, L, n)
fontsize = 20

# just pick some function for b and eta that look nice
H = 1.012

b(x) = x * cos.(3 * pi * x) + H
plot(x, b, color = :gray, fill = (0, 0.8, :gray), fillstyle = :/, linewidth = 3, legend = nothing, ticks = nothing, border = :none)

eta(x) = x / (x^2 + 1) * sin(2 * pi * x) + H + 1.5
plot!(x, eta, color = :blue, fill = (b.(x), 0.4, :blue), linewidth = 3)

x1 = 0.2
plot!([x1, x1], [b(x1), eta(x1)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), annotation = (x1 - 0.08, (eta(x1) + b(x1))/ 2, text(L"h(t, x)", fontsize)), linewidth = 2)
x2 = 0.4
plot!([x2, x2], [0.0, b(x2)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), annotation = (x2 + 0.06, b(x2) / 2, text(L"b(x)", fontsize)), linewidth = 2)
x3 = 0.8
plot!([x3, x3], [0.0, eta(x3)], line = (Plots.Arrow(:open, :both, 2.5, 2.0), :black), annotation = (x3 - 0.08, eta(x3) / 2, text(L"\eta(t, x)", fontsize)), linewidth = 2)

savefig(joinpath(OUT, "bathymetry.pdf"))
end

# Plot of diserpersion relations
function fig_2()
linewidth = 2
markersize = 5

h0 = 1.0
g = 1.0
c0 = sqrt(g * h0)

k = 0.01:0.5:(8*pi)
k_zoom = 0.01:0.3:pi
ylim = (0.0, 1.1)


omega_euler(k) = sqrt(g * k) * sqrt(tanh(h0 * k))
c_euler(k) = omega_euler(k) / k
plot(k, c_euler.(k) ./ c0, label = "Euler", ylim = ylim, xguide = L"k", yguide = L"c/c_0", linewidth = linewidth, markershape = :circle, markersize = markersize)
plot!(k_zoom, c_euler.(k_zoom) ./ c0, ylims = (0.54, 1.0), inset = bbox(0.35, 0.1, 0.35, 0.3), subplot = 2, legend = nothing, linewidth = linewidth, markershape = :circle, markersize = markersize)

function plot_dispersion_relation(omega, label, markershape)
c(k) = omega(k) / k
plot!(k, c.(k) ./ c0, label = label, linewidth = linewidth, markershape = markershape, markersize = markersize)
plot!(k_zoom, c.(k_zoom) ./ c0, subplot = 2, linewidth = linewidth, markershape = markershape, markersize = markersize)
end

quote
trixi_include(joinpath(examples_dir(), $filename); $kwargs...)
elixirname = splitext(basename($filename))[1]
outdir = joinpath("out", dirname($filename), elixirname)
ispath(outdir) || mkpath(outdir)

# Plot solution
anim = @animate for step in 1:length(sol.u)
plot(semi => sol, plot_initial = true, step = step, yli = $ylims_gif)
end
gif(anim, joinpath(outdir, "solution.gif"), fps = 25)

# Plot error in invariants
plot(analysis_callback)
savefig(joinpath(outdir, "invariants.pdf"))

# Plot at different x values over time
@assert size($x_values) == size($tlims)
for (i, x) in enumerate($x_values)
plot(semi => sol, x, xlim = $tlims[i], yli = $ylims_x)
savefig(joinpath(outdir, "solution_at_x_" * string(x) * ".pdf"))
end
omega_bbmbbm_(k, d0) = sqrt(g * h0) * k / (1 + 1/6*(d0 * k)^2)
omega_bbmbbm(k) = omega_bbmbbm_(k, h0)
plot_dispersion_relation(omega_bbmbbm, "BBM-BBM", :cross)


alpha_set1 = -1/3 * c0 * h0^2
beta_set1 = 0.0 * h0^3
gamma_set1 = 0.0 * c0 * h0^3

alpha_set2 = 0.0004040404040404049 * c0 * h0^2
beta_set2 = 0.49292929292929294 * h0^3
gamma_set2 = 0.15707070707070708 * c0 * h0^3

alpha_set3 = 0.0 * c0 * h0^2
beta_set3 = 0.27946992481203003 * h0^3
gamma_set3 = 0.0521077694235589 * c0 * h0^3

alpha_set4 = 0.0 * c0 * h0^2
beta_set4 = 0.2308939393939394 * h0^3
gamma_set4 = 0.04034343434343434 * c0 * h0^3

function char_equation(alpha, beta, gamma, k)
a = (1 + beta/h0*k^2)
b = (-alpha - beta*alpha/h0*k^2 - gamma/h0)*k^3
c = -g*h0*k^2 + gamma*alpha/h0*k^6
omega1 = (-b + sqrt(b^2 - 4*a*c))/(2*a)
# omega2 = (-b - sqrt(b^2 - 4*a*c))/(2*a)
return omega1
end

omega_set1(k) = char_equation(alpha_set1, beta_set1, gamma_set1, k)
plot_dispersion_relation(omega_set1, "S.-K. set 1", :rtriangle)

omega_set2(k) = char_equation(alpha_set2, beta_set2, gamma_set2, k)
plot_dispersion_relation(omega_set2, "S.-K. set 2", :star5)

omega_set3(k) = char_equation(alpha_set3, beta_set3, gamma_set3, k)
plot_dispersion_relation(omega_set3, "S.-K. set 3", :star8)

omega_set4(k) = char_equation(alpha_set4, beta_set4, gamma_set4, k)
plot_dispersion_relation(omega_set4, "S.-K. set 4", :diamond)

savefig(joinpath(OUT, "dispersion_relations.pdf"))
end

# Get the first value assigned to `keyword` in `args` and return `default_value`
# if there are no assignments to `keyword` in `args`.
function get_kwarg(args, keyword, default_value)
val = default_value
for arg in args
if arg.head == :(=) && arg.args[1] == keyword
val = arg.args[2]
break
end
# Plot convergence orders for baseline and relaxation
function fig_3()
tspan = (0.0, 10.0)
accuracy_orders = [2, 4, 6, 8]
styles = [:dash, :dot, :dashdot, :dashdotdot]
iters = [4, 4, 4, 3]
initial_Ns = [128, 128, 128, 128]

all_Ns = minimum(initial_Ns) * 2 .^ (0:(maximum(iters) - 1))

plot([], label = :none, xscale = :log2, yscale = :log10, xticks = all_Ns, xlabel = "N", ylabel = L"||\eta - \eta_{ana}||_2 + ||v - v_{ana}||_2")
for i in 1:length(accuracy_orders)
Ns = initial_Ns[i] * 2 .^ (0:(iters[i] - 1))
_, errormatrix = convergence_test("examples/bbm_bbm_1d/bbm_bbm_1d_basic.jl", iters[i]; N = initial_Ns[i], tspan = tspan, accuracy_order = accuracy_orders[i])
# Use sum over all L^2-errors for all variables, i.e. ||η - η_ana||_2 + ||v - v_ana||_2
l2_err = sum(errormatrix[:l2], dims=2)
eocs = log.(l2_err[2:end] ./ l2_err[1:(end - 1)]) ./ log(0.5)
eoc_mean = round(sum(eocs) / length(eocs), digits = 2)
plot!(Ns, l2_err, style = styles[i], label = "p = $accuracy_order, EOC: $eoc_mean")
end
savefig(joinpath(OUT, "orders.pdf"))

plot([], label = :none, xscale = :log2, yscale = :log10, xticks = all_Ns, xlabel = "N", ylabel = L"||\eta - \eta_{ana}||_2 + ||v - v_{ana}||_2")
for i in 1:length(accuracy_orders)
Ns = initial_Ns[i] * 2 .^ (0:(iters[i] - 1))
_, errormatrix = convergence_test("examples/bbm_bbm_1d/bbm_bbm_1d_relaxation.jl", iters[i]; N = initial_Ns[i], tspan = tspan, accuracy_order = accuracy_orders[i])
# Use sum over all L^2-errors for all variables, i.e. ||η - η_ana||_2 + ||v - v_ana||_2
l2_err = sum(errormatrix[:l2], dims=2)
eocs = log.(l2_err[2:end] ./ l2_err[1:(end - 1)]) ./ log(0.5)
eoc_mean = round(sum(eocs) / length(eocs), digits = 2)
plot!(Ns, l2_err, style = styles[i], label = "p = $accuracy_order, EOC: $eoc_mean")
end
return val
savefig(joinpath(OUT, "orders_relaxation.pdf"))
end

const EXAMPLES_DIR_BBMBBM = "bbm_bbm_1d"
const EXAMPLES_DIR_BBMBBM_VARIABLE = "bbm_bbm_variable_bathymetry_1d"
const EXAMPLES_DIR_SVAERD_KALISCH = "svaerd_kalisch_1d"

###############################################################################
# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions
# using periodic SBP operators
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_basic.jl"),
ylims_gif=[(-8, 4), :auto], tspan=(0.0, 50.0))

###############################################################################
# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions
# using discontinuously coupled Legendre SBP operators
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_dg.jl"),
ylims_gif=[(-4, 2), :auto])

###############################################################################
# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions
# using periodic SBP operators and relaxation, is energy-conservative
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM, "bbm_bbm_1d_relaxation.jl"),
ylims_gif=[(-8, 4), (-10, 30)],
tspan=(0.0, 30.0))

###############################################################################
# Travelling wave solution for one-dimensional BBM-BBM equations with periodic boundary conditions
# using periodic SBP operators. Uses the BBM-BBM equations with variable bathymetry, but sets the bathymetry
# as a constant. Should give the same result as "bbm_bbm_1d_basic.jl"
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE,
"bbm_bbm_variable_bathymetry_1d_basic.jl"),
ylims_gif=[(-8, 4), :auto],
tspan=(0.0, 50.0))

###############################################################################
# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height
# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution
# is energy-conservative. Uses periodic finite difference SBP operators.
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE,
"bbm_bbm_variable_bathymetry_1d_relaxation.jl"),
ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)],
tspan=(0.0, 10.0))

###############################################################################
# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height
# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution
# is energy-conservative. Uses upwind discontinuously coupled SBP operators.
@plot_elixir(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE,
"bbm_bbm_variable_bathymetry_1d_dg_upwind_relaxation.jl"),
ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)],
tspan=(0.0, 10.0))

###############################################################################
# One-dimensional BBM-BBM equations with a Gaussian bump as initial condition for the water height
# and initially still water. The bathymetry is a sine function. Relaxation is used, so the solution
# is energy-conservative. Uses periodic finite difference discontinuously coupled SBP operators.
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE,
"bbm_bbm_variable_bathymetry_1d_upwind_relaxation.jl"),
ylims_gif=[(-1.5, 6.0), (-10.0, 10.0)],
tspan=(0.0, 10.0))

###############################################################################
# One-dimensional BBM-BBM equations with a constant water height
# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution
# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be
# (exactly) constant in time.
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE,
"bbm_bbm_variable_bathymetry_1d_well_balanced.jl"),
ylims_gif=[(2.0 - 1e-3, 2.0 + 1e-3), (-1e-3, 1e-3)],
tspan=(0.0, 10.0))

###############################################################################
# One-dimensional BBM-BBM equations with initial condition that models
# a wave make. This setup comes from experiments by W. M. Dingemans.
@plot_example(joinpath(EXAMPLES_DIR_BBMBBM_VARIABLE,
"bbm_bbm_variable_bathymetry_1d_dingemans.jl"),
ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)],
ylims_x=[:auto, :auto],
x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04],
tlims=[
(15.0, 45.0),
(19.0, 48.0),
(25.0, 52.0),
(30.0, 60.0),
(33.0, 61.0),
(35.0, 65.0),
],
tspan=(0.0, 70.0))

###############################################################################
# One-dimensional equations from Svärd and Kalisch with initial condition that models
# a wave make. This setup comes from experiments by W. M. Dingemans.
@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH,
"svaerd_kalisch_1d_dingemans.jl"),
ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)],
ylims_x=[:auto, :auto],
x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04],
tlims=[
(15.0, 45.0),
(19.0, 48.0),
(25.0, 52.0),
(30.0, 60.0),
(33.0, 61.0),
(35.0, 65.0),
],
tspan=(0.0, 70.0))

###############################################################################
# One-dimensional equations from Svärd and Kalisch with initial condition that models
# a wave make. This setup comes from experiments by W. M. Dingemans.
@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH,
"svaerd_kalisch_1d_dingemans_upwind.jl"),
ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)],
ylims_x=[:auto, :auto],
x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04],
tlims=[
(15.0, 45.0),
(19.0, 48.0),
(25.0, 52.0),
(30.0, 60.0),
(33.0, 61.0),
(35.0, 65.0),
],
tspan=(0.0, 70.0))

###############################################################################
# One-dimensional equations from Svärd and Kalisch with initial condition that models
# a wave make. This setup comes from experiments by W. M. Dingemans. Relaxation is used
# to preserve the modified entropy.
@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH,
"svaerd_kalisch_1d_dingemans_relaxation.jl"),
ylims_gif=[(-0.1, 0.9), (-0.3, 0.3)],
ylims_x=[:auto, :auto],
x_values=[3.04, 9.44, 20.04, 26.04, 30.44, 37.04],
tlims=[
(15.0, 45.0),
(19.0, 48.0),
(25.0, 52.0),
(30.0, 60.0),
(33.0, 61.0),
(35.0, 65.0),
],
tspan=(0.0, 70.0))

###############################################################################
# One-dimensional Svärd-Kalisch equations with a constant water height
# and initially still water. The bathymetry is discontinuous. Relaxation is used, so the solution
# is energy-conservative. Uses periodic finite difference SBP operators. The solution should be
# (exactly) constant in time.
@plot_example(joinpath(EXAMPLES_DIR_SVAERD_KALISCH,
"svaerd_kalisch_1d_well_balanced.jl"),
ylims=[(2.0 - 1e-3, 2.0 + 1e-3), (-1e-3, 1e-3)],
tspan=(0.0, 10.0))
fig_1()
fig_2()
fig_3()
7 changes: 6 additions & 1 deletion docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,12 @@
[![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl)
[![License: MIT](https://img.shields.io/badge/License-MIT-success.svg)](https://opensource.org/licenses/MIT)

[**DispersiveShallowWater.jl**](https://github.com/JoshuaLampert/DispersiveShallowWater.jl) is a [Julia](https://julialang.org/) package that implements structure-preserving numerical methods for dispersive shallow water models. To date, it provides provably conservative, entropy-conserving and well-balanced numerical schemes of the [BBM-BBM equations with varying bottom topography](https://iopscience.iop.org/article/10.1088/1361-6544/ac3c29), and the [dispersive shallow water model proposed by Magnus Svärd and Henrik Kalisch](https://arxiv.org/abs/2302.09924). The semidiscretizations are based on summation by parts (SBP) operators, which are implemented in [SummationByPartsOperators.jl](https://github.com/ranocha/SummationByPartsOperators.jl/). In order to obtain fully discrete schemes, the time integration methods from [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl) are used to solve the resulting ordinary differential equations. Fully discrete entropy-conservative methods can be obtained by using the [relaxation method](https://epubs.siam.org/doi/10.1137/19M1263662) provided by DispersiveShallowWater.jl.
[**DispersiveShallowWater.jl**](https://github.com/JoshuaLampert/DispersiveShallowWater.jl) is a [Julia](https://julialang.org/) package that implements structure-preserving numerical methods for dispersive shallow water models. To date, it provides provably conservative, entropy-conserving and well-balanced numerical schemes for two dispersive shallow water models:

* the [BBM-BBM equations with varying bottom topography](https://iopscience.iop.org/article/10.1088/1361-6544/ac3c29),
* the [dispersive shallow water model proposed by Magnus Svärd and Henrik Kalisch](https://arxiv.org/abs/2302.09924).

The semidiscretizations are based on summation by parts (SBP) operators, which are implemented in [SummationByPartsOperators.jl](https://github.com/ranocha/SummationByPartsOperators.jl/). In order to obtain fully discrete schemes, the time integration methods from [OrdinaryDiffEq.jl](https://github.com/SciML/OrdinaryDiffEq.jl) are used to solve the resulting ordinary differential equations. Fully discrete entropy-conservative methods can be obtained by using the [relaxation method](https://epubs.siam.org/doi/10.1137/19M1263662) provided by DispersiveShallowWater.jl.

# Installation

Expand Down
Loading

0 comments on commit 4ea5e4e

Please sign in to comment.