-
Notifications
You must be signed in to change notification settings - Fork 125
/
external.py
213 lines (169 loc) · 9.27 KB
/
external.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file found here:
# https://github.com/graphdeco-inria/gaussian-splatting/blob/main/LICENSE.md
#
# For inquiries contact [email protected]
#######################################################################################################################
##### NOTE: CODE IN THIS FILE IS NOT INCLUDED IN THE OVERALL PROJECT'S MIT LICENSE #####
##### USE OF THIS CODE FOLLOWS THE COPYRIGHT NOTICE ABOVE #####
#######################################################################################################################
"""
import torch
import torch.nn.functional as func
from torch.autograd import Variable
from math import exp
def build_rotation(q):
norm = torch.sqrt(q[:, 0] * q[:, 0] + q[:, 1] * q[:, 1] + q[:, 2] * q[:, 2] + q[:, 3] * q[:, 3])
q = q / norm[:, None]
rot = torch.zeros((q.size(0), 3, 3), device='cuda')
r = q[:, 0]
x = q[:, 1]
y = q[:, 2]
z = q[:, 3]
rot[:, 0, 0] = 1 - 2 * (y * y + z * z)
rot[:, 0, 1] = 2 * (x * y - r * z)
rot[:, 0, 2] = 2 * (x * z + r * y)
rot[:, 1, 0] = 2 * (x * y + r * z)
rot[:, 1, 1] = 1 - 2 * (x * x + z * z)
rot[:, 1, 2] = 2 * (y * z - r * x)
rot[:, 2, 0] = 2 * (x * z - r * y)
rot[:, 2, 1] = 2 * (y * z + r * x)
rot[:, 2, 2] = 1 - 2 * (x * x + y * y)
return rot
def calc_mse(img1, img2):
return ((img1 - img2) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
def calc_psnr(img1, img2):
mse = ((img1 - img2) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
return 20 * torch.log10(1.0 / torch.sqrt(mse))
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def calc_ssim(img1, img2, window_size=11, size_average=True):
channel = img1.size(-3)
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = func.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = func.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = func.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = func.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = func.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
c1 = 0.01 ** 2
c2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + c1) * (2 * sigma12 + c2)) / ((mu1_sq + mu2_sq + c1) * (sigma1_sq + sigma2_sq + c2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def accumulate_mean2d_gradient(variables):
variables['means2D_gradient_accum'][variables['seen']] += torch.norm(
variables['means2D'].grad[variables['seen'], :2], dim=-1)
variables['denom'][variables['seen']] += 1
return variables
def update_params_and_optimizer(new_params, params, optimizer):
for k, v in new_params.items():
group = [x for x in optimizer.param_groups if x["name"] == k][0]
stored_state = optimizer.state.get(group['params'][0], None)
stored_state["exp_avg"] = torch.zeros_like(v)
stored_state["exp_avg_sq"] = torch.zeros_like(v)
del optimizer.state[group['params'][0]]
group["params"][0] = torch.nn.Parameter(v.requires_grad_(True))
optimizer.state[group['params'][0]] = stored_state
params[k] = group["params"][0]
return params
def cat_params_to_optimizer(new_params, params, optimizer):
for k, v in new_params.items():
group = [g for g in optimizer.param_groups if g['name'] == k][0]
stored_state = optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(v)), dim=0)
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(v)), dim=0)
del optimizer.state[group['params'][0]]
group["params"][0] = torch.nn.Parameter(torch.cat((group["params"][0], v), dim=0).requires_grad_(True))
optimizer.state[group['params'][0]] = stored_state
params[k] = group["params"][0]
else:
group["params"][0] = torch.nn.Parameter(torch.cat((group["params"][0], v), dim=0).requires_grad_(True))
params[k] = group["params"][0]
return params
def remove_points(to_remove, params, variables, optimizer):
to_keep = ~to_remove
keys = [k for k in params.keys() if k not in ['cam_m', 'cam_c']]
for k in keys:
group = [g for g in optimizer.param_groups if g['name'] == k][0]
stored_state = optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = stored_state["exp_avg"][to_keep]
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][to_keep]
del optimizer.state[group['params'][0]]
group["params"][0] = torch.nn.Parameter((group["params"][0][to_keep].requires_grad_(True)))
optimizer.state[group['params'][0]] = stored_state
params[k] = group["params"][0]
else:
group["params"][0] = torch.nn.Parameter(group["params"][0][to_keep].requires_grad_(True))
params[k] = group["params"][0]
variables['means2D_gradient_accum'] = variables['means2D_gradient_accum'][to_keep]
variables['denom'] = variables['denom'][to_keep]
variables['max_2D_radius'] = variables['max_2D_radius'][to_keep]
return params, variables
def inverse_sigmoid(x):
return torch.log(x / (1 - x))
def densify(params, variables, optimizer, i):
if i <= 5000:
variables = accumulate_mean2d_gradient(variables)
grad_thresh = 0.0002
if (i >= 500) and (i % 100 == 0):
grads = variables['means2D_gradient_accum'] / variables['denom']
grads[grads.isnan()] = 0.0
to_clone = torch.logical_and(grads >= grad_thresh, (
torch.max(torch.exp(params['log_scales']), dim=1).values <= 0.01 * variables['scene_radius']))
new_params = {k: v[to_clone] for k, v in params.items() if k not in ['cam_m', 'cam_c']}
params = cat_params_to_optimizer(new_params, params, optimizer)
num_pts = params['means3D'].shape[0]
padded_grad = torch.zeros(num_pts, device="cuda")
padded_grad[:grads.shape[0]] = grads
to_split = torch.logical_and(padded_grad >= grad_thresh,
torch.max(torch.exp(params['log_scales']), dim=1).values > 0.01 * variables[
'scene_radius'])
n = 2 # number to split into
new_params = {k: v[to_split].repeat(n, 1) for k, v in params.items() if k not in ['cam_m', 'cam_c']}
stds = torch.exp(params['log_scales'])[to_split].repeat(n, 1)
means = torch.zeros((stds.size(0), 3), device="cuda")
samples = torch.normal(mean=means, std=stds)
rots = build_rotation(params['unnorm_rotations'][to_split]).repeat(n, 1, 1)
new_params['means3D'] += torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1)
new_params['log_scales'] = torch.log(torch.exp(new_params['log_scales']) / (0.8 * n))
params = cat_params_to_optimizer(new_params, params, optimizer)
num_pts = params['means3D'].shape[0]
variables['means2D_gradient_accum'] = torch.zeros(num_pts, device="cuda")
variables['denom'] = torch.zeros(num_pts, device="cuda")
variables['max_2D_radius'] = torch.zeros(num_pts, device="cuda")
to_remove = torch.cat((to_split, torch.zeros(n * to_split.sum(), dtype=torch.bool, device="cuda")))
params, variables = remove_points(to_remove, params, variables, optimizer)
remove_threshold = 0.25 if i == 5000 else 0.005
to_remove = (torch.sigmoid(params['logit_opacities']) < remove_threshold).squeeze()
if i >= 3000:
big_points_ws = torch.exp(params['log_scales']).max(dim=1).values > 0.1 * variables['scene_radius']
to_remove = torch.logical_or(to_remove, big_points_ws)
params, variables = remove_points(to_remove, params, variables, optimizer)
torch.cuda.empty_cache()
if i > 0 and i % 3000 == 0:
new_params = {'logit_opacities': inverse_sigmoid(torch.ones_like(params['logit_opacities']) * 0.01)}
params = update_params_and_optimizer(new_params, params, optimizer)
return params, variables