Skip to content

hydra.errors.HydraException: Error calling 'datasets.semseg.SemanticSegmentationDataset' : not available number labels, select from: 200, 200 #103

@bh-cai

Description

@bh-cai

when I run the flow command, I got the issue: hydra.errors.HydraException: Error calling 'datasets.semseg.SemanticSegmentationDataset' : not available number labels, select from: 200, 200

main_instance_segmentation.py general.experiment_name=test1_scannet_val_query_150_topk_500_dbscan_0.95 general.project_name=scannet_eval general.checkpoint='checkpoints/scannet/scannet_val.ckpt' general.train_mode=false general.eval_on_segments=true general.train_on_segments=true model.num_queries=150 general.topk_per_image=500 general.use_dbscan=true general.dbscan_eps=0.95

/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/utilities/seed.py:55: UserWarning: No seed found, seed set to 2801433411
rank_zero_warn(f"No seed found, seed set to {seed}")
Global seed set to 2801433411
EXPERIMENT ALREADY EXIST
{'target': 'pytorch_lightning.loggers.WandbLogger', 'project': '${general.project_name}', 'name': '${general.experiment_name}', 'save_dir': '${general.save_dir}', 'entity': 'manjusaka_labs', 'resume': 'allow', 'id': '${general.experiment_name}'}
wandb: Currently logged in as: bh_c (manjusaka_labs). Use wandb login --relogin to force relogin
wandb: wandb version 0.15.4 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.15.0
wandb: Run data is saved locally in saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95/wandb/run-20230609_012749-test1_scannet_val_query_150_topk_500_dbscan_0.95
wandb: Run wandb offline to turn off syncing.
wandb: Resuming run test1_scannet_val_query_150_topk_500_dbscan_0.95
wandb: ⭐️ View project at https://wandb.ai/manjusaka_labs/scannet_eval
wandb: 🚀 View run at https://wandb.ai/manjusaka_labs/scannet_eval/runs/test1_scannet_val_query_150_topk_500_dbscan_0.95
2023-06-09 01:27:54.018 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:91 - Key not found, it will be initialized randomly: model.scene_min
2023-06-09 01:27:54.019 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:91 - Key not found, it will be initialized randomly: model.scene_max
2023-06-09 01:27:54.145 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:100 - criterion.empty_weight not in loaded checkpoint
2023-06-09 01:27:54.149 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:115 - excessive key: model.scene_min
2023-06-09 01:27:54.149 | WARNING | utils.utils:load_checkpoint_with_missing_or_exsessive_keys:115 - excessive key: model.scene_max
[2023-06-09 01:27:54,238][main][INFO] - {'general_train_mode': False, 'general_task': 'instance_segmentation', 'general_seed': None, 'general_checkpoint': 'checkpoints/scannet/scannet_val.ckpt', 'general_backbone_checkpoint': None, 'general_freeze_backbone': False, 'general_linear_probing_backbone': False, 'general_train_on_segments': True, 'general_eval_on_segments': True, 'general_filter_out_instances': False, 'general_save_visualizations': False, 'general_visualization_point_size': 20, 'general_decoder_id': -1, 'general_export': False, 'general_use_dbscan': True, 'general_ignore_class_threshold': 100, 'general_project_name': 'scannet_eval', 'general_workspace': 'jonasschult', 'general_experiment_name': 'test1_scannet_val_query_150_topk_500_dbscan_0.95', 'general_num_targets': 19, 'general_add_instance': True, 'general_dbscan_eps': 0.95, 'general_dbscan_min_points': 1, 'general_export_threshold': 0.0001, 'general_reps_per_epoch': 1, 'general_on_crops': False, 'general_scores_threshold': 0.0, 'general_iou_threshold': 1.0, 'general_area': 5, 'general_eval_inner_core': -1, 'general_topk_per_image': 500, 'general_ignore_mask_idx': [], 'general_max_batch_size': 99999999, 'general_save_dir': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95', 'general_gpus': 1, 'data_train_mode': 'train', 'data_validation_mode': 'validation', 'data_test_mode': 'validation', 'data_ignore_label': 255, 'data_add_raw_coordinates': True, 'data_add_colors': True, 'data_add_normals': False, 'data_in_channels': 3, 'data_num_labels': 20, 'data_add_instance': True, 'data_task': 'instance_segmentation', 'data_pin_memory': False, 'data_num_workers': 4, 'data_batch_size': 5, 'data_test_batch_size': 1, 'data_cache_data': False, 'data_voxel_size': 0.02, 'data_reps_per_epoch': 1, 'data_cropping': False, 'data_cropping_args_min_points': 30000, 'data_cropping_args_aspect': 0.8, 'data_cropping_args_min_crop': 0.5, 'data_cropping_args_max_crop': 1.0, 'data_crop_min_size': 20000, 'data_crop_length': 6.0, 'data_cropping_v1': True, 'data_train_dataloader__target_': 'torch.utils.data.DataLoader', 'data_train_dataloader_shuffle': True, 'data_train_dataloader_pin_memory': False, 'data_train_dataloader_num_workers': 4, 'data_train_dataloader_batch_size': 5, 'data_validation_dataloader__target_': 'torch.utils.data.DataLoader', 'data_validation_dataloader_shuffle': False, 'data_validation_dataloader_pin_memory': False, 'data_validation_dataloader_num_workers': 4, 'data_validation_dataloader_batch_size': 1, 'data_test_dataloader__target_': 'torch.utils.data.DataLoader', 'data_test_dataloader_shuffle': False, 'data_test_dataloader_pin_memory': False, 'data_test_dataloader_num_workers': 4, 'data_test_dataloader_batch_size': 1, 'data_train_dataset__target_': 'datasets.semseg.SemanticSegmentationDataset', 'data_train_dataset_dataset_name': 'scannet', 'data_train_dataset_data_dir': 'data/processed/scannet', 'data_train_dataset_image_augmentations_path': 'conf/augmentation/albumentations_aug.yaml', 'data_train_dataset_volume_augmentations_path': 'conf/augmentation/volumentations_aug.yaml', 'data_train_dataset_label_db_filepath': 'data/processed/scannet/label_database.yaml', 'data_train_dataset_color_mean_std': 'data/processed/scannet/color_mean_std.yaml', 'data_train_dataset_data_percent': 1.0, 'data_train_dataset_mode': 'train', 'data_train_dataset_ignore_label': 255, 'data_train_dataset_num_labels': 20, 'data_train_dataset_add_raw_coordinates': True, 'data_train_dataset_add_colors': True, 'data_train_dataset_add_normals': False, 'data_train_dataset_add_instance': True, 'data_train_dataset_instance_oversampling': 0.0, 'data_train_dataset_place_around_existing': False, 'data_train_dataset_point_per_cut': 0, 'data_train_dataset_max_cut_region': 0, 'data_train_dataset_flip_in_center': False, 'data_train_dataset_noise_rate': 0, 'data_train_dataset_resample_points': 0, 'data_train_dataset_add_unlabeled_pc': False, 'data_train_dataset_cropping': False, 'data_train_dataset_cropping_args_min_points': 30000, 'data_train_dataset_cropping_args_aspect': 0.8, 'data_train_dataset_cropping_args_min_crop': 0.5, 'data_train_dataset_cropping_args_max_crop': 1.0, 'data_train_dataset_is_tta': False, 'data_train_dataset_crop_min_size': 20000, 'data_train_dataset_crop_length': 6.0, 'data_train_dataset_filter_out_classes': [0, 1], 'data_train_dataset_label_offset': 2, 'data_validation_dataset__target_': 'datasets.semseg.SemanticSegmentationDataset', 'data_validation_dataset_dataset_name': 'scannet', 'data_validation_dataset_data_dir': 'data/processed/scannet', 'data_validation_dataset_image_augmentations_path': None, 'data_validation_dataset_volume_augmentations_path': None, 'data_validation_dataset_label_db_filepath': 'data/processed/scannet/label_database.yaml', 'data_validation_dataset_color_mean_std': 'data/processed/scannet/color_mean_std.yaml', 'data_validation_dataset_data_percent': 1.0, 'data_validation_dataset_mode': 'validation', 'data_validation_dataset_ignore_label': 255, 'data_validation_dataset_num_labels': 20, 'data_validation_dataset_add_raw_coordinates': True, 'data_validation_dataset_add_colors': True, 'data_validation_dataset_add_normals': False, 'data_validation_dataset_add_instance': True, 'data_validation_dataset_cropping': False, 'data_validation_dataset_is_tta': False, 'data_validation_dataset_crop_min_size': 20000, 'data_validation_dataset_crop_length': 6.0, 'data_validation_dataset_filter_out_classes': [0, 1], 'data_validation_dataset_label_offset': 2, 'data_test_dataset__target_': 'datasets.semseg.SemanticSegmentationDataset', 'data_test_dataset_dataset_name': 'scannet', 'data_test_dataset_data_dir': 'data/processed/scannet', 'data_test_dataset_image_augmentations_path': None, 'data_test_dataset_volume_augmentations_path': None, 'data_test_dataset_label_db_filepath': 'data/processed/scannet/label_database.yaml', 'data_test_dataset_color_mean_std': 'data/processed/scannet/color_mean_std.yaml', 'data_test_dataset_data_percent': 1.0, 'data_test_dataset_mode': 'validation', 'data_test_dataset_ignore_label': 255, 'data_test_dataset_num_labels': 20, 'data_test_dataset_add_raw_coordinates': True, 'data_test_dataset_add_colors': True, 'data_test_dataset_add_normals': False, 'data_test_dataset_add_instance': True, 'data_test_dataset_cropping': False, 'data_test_dataset_is_tta': False, 'data_test_dataset_crop_min_size': 20000, 'data_test_dataset_crop_length': 6.0, 'data_test_dataset_filter_out_classes': [0, 1], 'data_test_dataset_label_offset': 2, 'data_train_collation__target_': 'datasets.utils.VoxelizeCollate', 'data_train_collation_ignore_label': 255, 'data_train_collation_voxel_size': 0.02, 'data_train_collation_mode': 'train', 'data_train_collation_small_crops': False, 'data_train_collation_very_small_crops': False, 'data_train_collation_batch_instance': False, 'data_train_collation_probing': False, 'data_train_collation_task': 'instance_segmentation', 'data_train_collation_ignore_class_threshold': 100, 'data_train_collation_filter_out_classes': [0, 1], 'data_train_collation_label_offset': 2, 'data_train_collation_num_queries': 150, 'data_validation_collation__target_': 'datasets.utils.VoxelizeCollate', 'data_validation_collation_ignore_label': 255, 'data_validation_collation_voxel_size': 0.02, 'data_validation_collation_mode': 'validation', 'data_validation_collation_batch_instance': False, 'data_validation_collation_probing': False, 'data_validation_collation_task': 'instance_segmentation', 'data_validation_collation_ignore_class_threshold': 100, 'data_validation_collation_filter_out_classes': [0, 1], 'data_validation_collation_label_offset': 2, 'data_validation_collation_num_queries': 150, 'data_test_collation__target_': 'datasets.utils.VoxelizeCollate', 'data_test_collation_ignore_label': 255, 'data_test_collation_voxel_size': 0.02, 'data_test_collation_mode': 'validation', 'data_test_collation_batch_instance': False, 'data_test_collation_probing': False, 'data_test_collation_task': 'instance_segmentation', 'data_test_collation_ignore_class_threshold': 100, 'data_test_collation_filter_out_classes': [0, 1], 'data_test_collation_label_offset': 2, 'data_test_collation_num_queries': 150, 'logging': [{'target': 'pytorch_lightning.loggers.WandbLogger', 'project': 'scannet_eval', 'name': 'test1_scannet_val_query_150_topk_500_dbscan_0.95', 'save_dir': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95', 'entity': 'manjusaka_labs', 'resume': 'allow', 'id': 'test1_scannet_val_query_150_topk_500_dbscan_0.95'}], 'model__target_': 'models.Mask3D', 'model_hidden_dim': 128, 'model_dim_feedforward': 1024, 'model_num_queries': 150, 'model_num_heads': 8, 'model_num_decoders': 3, 'model_dropout': 0.0, 'model_pre_norm': False, 'model_use_level_embed': False, 'model_normalize_pos_enc': True, 'model_positional_encoding_type': 'fourier', 'model_gauss_scale': 1.0, 'model_hlevels': [0, 1, 2, 3], 'model_non_parametric_queries': True, 'model_random_query_both': False, 'model_random_normal': False, 'model_random_queries': False, 'model_use_np_features': False, 'model_sample_sizes': [200, 800, 3200, 12800, 51200], 'model_max_sample_size': False, 'model_shared_decoder': True, 'model_num_classes': 19, 'model_train_on_segments': True, 'model_scatter_type': 'mean', 'model_voxel_size': 0.02, 'model_config_backbone__target_': 'models.Res16UNet34C', 'model_config_backbone_config_dialations': [1, 1, 1, 1], 'model_config_backbone_config_conv1_kernel_size': 5, 'model_config_backbone_config_bn_momentum': 0.02, 'model_config_backbone_in_channels': 3, 'model_config_backbone_out_channels': 20, 'model_config_backbone_out_fpn': True, 'metrics__target_': 'models.metrics.ConfusionMatrix', 'metrics_num_classes': 20, 'metrics_ignore_label': 255, 'optimizer__target_': 'torch.optim.AdamW', 'optimizer_lr': 0.0001, 'scheduler_scheduler__target_': 'torch.optim.lr_scheduler.OneCycleLR', 'scheduler_scheduler_max_lr': 0.0001, 'scheduler_scheduler_epochs': 601, 'scheduler_scheduler_steps_per_epoch': -1, 'scheduler_pytorch_lightning_params_interval': 'step', 'trainer_deterministic': False, 'trainer_max_epochs': 601, 'trainer_min_epochs': 1, 'trainer_resume_from_checkpoint': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95/last-epoch.ckpt', 'trainer_check_val_every_n_epoch': 50, 'trainer_num_sanity_val_steps': 2, 'callbacks': [{'target': 'pytorch_lightning.callbacks.ModelCheckpoint', 'monitor': 'val_mean_ap_50', 'save_last': True, 'save_top_k': 1, 'mode': 'max', 'dirpath': 'saved/test/test1_scannet_val_query_150_topk_500_dbscan_0.95', 'filename': '{epoch}-{val_mean_ap_50:.3f}', 'every_n_epochs': 1}, {'target': 'pytorch_lightning.callbacks.LearningRateMonitor'}], 'matcher__target_': 'models.matcher.HungarianMatcher', 'matcher_cost_class': 2.0, 'matcher_cost_mask': 5.0, 'matcher_cost_dice': 2.0, 'matcher_num_points': -1, 'loss__target_': 'models.criterion.SetCriterion', 'loss_num_classes': 19, 'loss_eos_coef': 0.1, 'loss_losses': ['labels', 'masks'], 'loss_num_points': -1, 'loss_oversample_ratio': 3.0, 'loss_importance_sample_ratio': 0.75, 'loss_class_weights': -1}
/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:446: LightningDeprecationWarning: Setting Trainer(gpus=1) is deprecated in v1.7 and will be removed in v2.0. Please use Trainer(accelerator='gpu', devices=1) instead.
rank_zero_deprecation(
/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/checkpoint_connector.py:52: LightningDeprecationWarning: Setting Trainer(resume_from_checkpoint=) is deprecated in v1.5 and will be removed in v1.7. Please pass Trainer.fit(ckpt_path=) directly instead.
rank_zero_deprecation(
/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:57: LightningDeprecationWarning: Setting Trainer(weights_save_path=) has been deprecated in v1.6 and will be removed in v1.8. Please pass dirpath directly to the ModelCheckpoint callback
rank_zero_deprecation(
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
/home/mylabs/Mask3D/datasets/semseg.py:696: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
file = yaml.load(f)
Traceback (most recent call last):
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/utils.py", line 63, in call
return _instantiate_class(type_or_callable, config, *args, **kwargs)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 500, in _instantiate_class
return clazz(*args, **final_kwargs)
File "/home/mylabs/Mask3D/datasets/semseg.py", line 218, in init
self._labels = self._select_correct_labels(labels, num_labels)
File "/home/mylabs/Mask3D/datasets/semseg.py", line 724, in _select_correct_labels
raise ValueError(msg)
ValueError: not available number labels, select from:
200, 200

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 198, in run_and_report
return func()
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 347, in
lambda: hydra.run(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/hydra.py", line 107, in run
return run_job(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/core/utils.py", line 128, in run_job
ret.return_value = task_function(task_cfg)
File "/home/mylabs/Mask3D/main_instance_segmentation.py", line 110, in main
test(cfg)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/main.py", line 27, in decorated_main
return task_function(cfg_passthrough)
File "/home/mylabs/Mask3D/main_instance_segmentation.py", line 100, in test
runner.test(model)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 864, in test
return self._call_and_handle_interrupt(self._test_impl, model, dataloaders, ckpt_path, verbose, datamodule)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 650, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 911, in _test_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1097, in _run
self._data_connector.prepare_data()
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py", line 120, in prepare_data
self.trainer._call_lightning_module_hook("prepare_data")
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1552, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "/home/mylabs/Mask3D/trainer/trainer.py", line 1269, in prepare_data
self.train_dataset = hydra.utils.instantiate(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/utils.py", line 70, in call
raise HydraException(f"Error calling '{cls}' : {e}") from e
hydra.errors.HydraException: Error calling 'datasets.semseg.SemanticSegmentationDataset' : not available number labels, select from:
200, 200

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/home/mylabs/Mask3D/main_instance_segmentation.py", line 114, in
main()
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/main.py", line 32, in decorated_main
_run_hydra(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 346, in _run_hydra
run_and_report(
File "/root/anaconda3/envs/mask3d_cuda113/lib/python3.10/site-packages/hydra/_internal/utils.py", line 267, in run_and_report
print_exception(etype=None, value=ex, tb=final_tb) # type: ignore
TypeError: print_exception() got an unexpected keyword argument 'etype'

Can you tell me how to solve the problem, thank you very much!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions