-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_tune_cascade.py
39 lines (35 loc) · 991 Bytes
/
run_tune_cascade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
"""
Tune the hyper parameters to get the best cascade performance.
"""
from app.tune_cascade_app import TuneCascadeApp
tune_params = [
# general
"fc1_size",
"learning_rate_init",
"L2_regularization_strength",
"L1_regularization_strength",
"dropout_rate",
"learning_rate_decay",
"conv_filter_sizes",
"conv_filter_size",
"conv_stride",
"pooling_size",
"pooling_stride",
"batch_size",
"optimizer",
# relevant for cascades only
"cascade_n_nets",
"min_beta",
"max_beta",
"f_beta_cascade_loss_very_last",
"data_augmentation_online",
"dao_horizontal_flip",
"dao_vertical_flip",
"dao_max_rotation_angle",
"dao_max_foreground_rotation_angle",
"dao_crop_min_percent", # tune this before dao_crop_probability
# "dao_crop_probability",
"dao_color_distortion_fast_mode", # tune this before dao_color_distortion
# "dao_color_distortion",
]
app = TuneCascadeApp(tune_params, random=True)