-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
95 lines (88 loc) · 3.17 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from utils.forward import evalForward
from model import LFN
from utils.utils import psnr
import torch.cuda
from torch import load
from numpy import asarray_chkfinite
from torch.utils.data import DataLoader
import torchvision.transforms
from dataset import Config, pngDataset
import os.path
from skimage.metrics import structural_similarity
from cv2 import cvtColor, COLOR_BGR2GRAY
import csv
def evalPng(config):
csvFile = open(file=config.SAVE+'{}.csv'.format(config.TYPE),
mode='w+', encoding='utf-8', newline="")
csvWriter = csv.writer(csvFile)
if os.path.exists(config.MODEL_LOAD_PATH):
config.MODEL.load_state_dict(load(config.MODEL_LOAD_PATH))
pngData = pngDataset(config.DATASET, config.TYPE, True)
testLoader = DataLoader(pngData, batch_size=config.BATCH_SIZE,
num_workers=config.NUMBER_WORKER, shuffle=False)
with torch.cuda.device(0):
config.MODEL.cuda()
index = 0
for index, imgs in enumerate(testLoader):
with torch.no_grad():
config.MODEL.eval()
y, gt, deltaTime = config.FORWARD(imgs[0], config.MODEL)
y, gt = y.cpu(), gt.cpu()
PILImage = torchvision.transforms.ToPILImage()(y.squeeze())
PILImage.save(
'{}{}-{}.png'.format(config.SAVE, config.TYPE, index))
y_hat = asarray_chkfinite(PILImage)
gtImg = asarray_chkfinite(
torchvision.transforms.ToPILImage()(gt.squeeze()))
psnrValue, _ = psnr(y_hat, gtImg)
SSIM = structural_similarity(cvtColor(
src=y_hat, code=COLOR_BGR2GRAY), cvtColor(src=gtImg, code=COLOR_BGR2GRAY))
# write to csv
csvWriter.writerow([psnrValue, SSIM, deltaTime])
def testAllInOne(config):
"""
test x2, x4, x8, in deep & shallow DOF dataset
"""
# select best model
saveRoot = config.SAVE
# eval shallow
config.DATASET = './Data/TestDataset/ShallowDOF/'
config.FORWARD = evalForward
config.SAVE = saveRoot+'Shallow/'
if not os.path.exists(config.SAVE):
os.mkdir(config.SAVE)
config.TYPE = 'x2'
evalPng(config)
config.FORWARD = evalForward
config.TYPE = 'Pipex4'
evalPng(config)
config.TYPE = 'Pipex8'
evalPng(config)
# eval deep
config.DATASET = './Data/TestDataset/DeepDOF/'
config.FORWARD = evalForward
config.SAVE = saveRoot+'Deep/'
if not os.path.exists(config.SAVE):
os.mkdir(config.SAVE)
config.TYPE = 'x2'
evalPng(config)
config.FORWARD = evalForward
config.TYPE = 'Pipex4'
evalPng(config)
config.TYPE = 'Pipex8'
evalPng(config)
if __name__ == "__main__":
evalPngConfig = Config(
DATASET='', # test data dir
MODEL_LOAD_PATH='./Model/LFN.pth', # model dir
SAVE='', # save output dir
NUMBER_WORKER=1,
BATCH_SIZE=1,
TYPE='x8', # scale
MODEL=LFN(c=32),
FORWARD=evalForward,
)
# test all scale in one, including x2 x4 x8 in both deep & shallow DoF
testAllInOne(evalPngConfig)
# test in single step for x8
evalPng(evalPngConfig)