digoal
2021-07-29
PostgreSQL , DiskANN
vmicrosoft.com/en-us/research/publication/diskann-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node/
https://suhasjs.github.io/files/diskann_neurips19.pdf
DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node
Suhas Jayaram Subramanya Devvrit Rohan Kadekodi Ravishankar Krishnaswamy Harsha Simhadri
NeurIPS 2019 | November 2019
Current state-of-the-art approximate nearest neighbor search (ANNS) algorithms generate indices that must be stored in main memory for fast high-recall search. This makes them expensive and limits the size of the dataset. We present a new graph-based indexing and search system called DiskANN that can index, store, and search a billion point database on a single workstation with just 64GB RAM and an inexpensive solid-state drive (SSD). Contrary to current wisdom, we demonstrate that the SSD-based indices built by DiskANN can meet all three desiderata for large-scale ANNS: high-recall, low query latency and high density (points indexed per node). On the billion point SIFT1B bigann dataset, DiskANN serves > 5000 queries a second with < 3ms mean latency and 95%+ 1-recall@1 on a 16 core machine, where state-of-the-art billion-point ANNS algorithms with similar memory footprint like FAISS [18] and IVFOADC+G+P [8] plateau at around 50% 1-recall@1. Alternately, in the high recall regime, DiskANN can index and serve 5 − 10x more points per node compared to state-of-the-art graphbased methods such as HNSW [21] and NSG [13]. Finally, as part of our overall DiskANN system, we introduce Vamana, a new graph-based ANNS index that is more versatile than the existing graph indices even for in-memory indices.
https://mp.weixin.qq.com/s/KgjpRGF4AoUskFESZR4lxQ
您的愿望将传达给PG kernel hacker、数据库厂商等, 帮助提高数据库产品质量和功能, 说不定下一个PG版本就有您提出的功能点. 针对非常好的提议,奖励限量版PG文化衫、纪念品、贴纸、PG热门书籍等,奖品丰富,快来许愿。开不开森.