-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDay20.hs
376 lines (327 loc) · 11.5 KB
/
Day20.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
module Javran.AdventOfCode.Y2020.Day20 (
) where
import Control.Monad
import Data.Bits
import qualified Data.IntMap.Strict as IM
import qualified Data.IntSet as IS
import Data.List
import Data.List.Split hiding (sepBy)
import qualified Data.Map.Strict as M
import Data.Monoid
import Data.Semigroup
import qualified Data.Set as S
import qualified Data.Vector as V
import Data.Word
import Javran.AdventOfCode.Prelude
import Text.ParserCombinators.ReadP hiding (many)
data Day20 deriving (Generic)
tileLen :: Int
tileLen = 10
halfLen :: Int
halfLen = tileLen `quot` 2
coords :: [Int]
coords = [0 .. tileLen - 1]
{-
(<lo>, <hi>)
for (r,c):
- when r < 5: `c + r * 10`, index into <lo>
- when r >= 5: `c + (r-5)*10`, index into <hi>
-}
newtype PackedTile = PackedTile (Word64, Word64)
toPackedTile :: [[Bool]] -> PackedTile
toPackedTile xs =
checkShape `seq`
PackedTile (packToWord loXs, packToWord hiXs)
where
checkShape =
( length xs == tileLen
|| error "invalid # of rows"
)
&& ( let (y : ys) = fmap length xs
in (y == tileLen && all (== y) ys)
|| error "invalid # of cols"
)
(loXs, hiXs) = splitAt halfLen xs
packToWord :: [[Bool]] -> Word64
packToWord yys = appEndo setup 0
where
setup = mconcat $ do
(r, ys) <- zip [0 ..] yys
(c, y) <- zip [0 ..] ys
let i = c + r * tileLen
if y
then pure $ Endo (`setBit` i)
else mempty
{-
We keep the underlying structure intact and simply export a function
that allows us to index into the tile.
If we want to rotate or flip a tile, we pre-compose a coordinate transformation.
This way we avoids actually performing any transformation on the underlying data entirely.
The trade off is that this precomposition could be multiple layers that we have to compute
on each access. But given that we pre-compose at most 4 times
(worse case is one vertical flip followed by 3 rotations),
this is a price we are willing to pay.
-}
type Tile = (Int, Int) -> Bool
toTile :: PackedTile -> Tile
toTile (PackedTile (lo, hi)) (r, c) =
if r < halfLen
then testBit lo (c + r * tileLen)
else testBit hi (c + (r - halfLen) * tileLen)
type TracedTile = (Int, Tile)
parseTile :: [String] -> TracedTile
parseTile (t : xs) =
( fromJust (consumeAllWithReadP tileNumP t)
, toTile . toPackedTile . (fmap . fmap) tr $ xs
)
where
tr '#' = True
tr '.' = False
tr _ = errInvalid
tileNumP = string "Tile " *> decimal1P <* char ':'
parseTile [] = errInvalid
data CoordTransformers a = CoordTransformers
{ flipVert :: forall b. (a -> b) -> (a -> b)
, rotateCwQt :: forall b. (a -> b) -> (a -> b)
}
{-
Side note:
notice that both flipVert and rotateCwQt are function precompositions,
meaning the following will work:
flipVert = getOp . contramap (\(r, c) -> (sideLen -1 - r, c)) . Op
looks nicer if we ignore those newtype wrappers,
but admittedly less readable.
-}
{- HLINT ignore mkCoordTransformers "Use first" -}
mkCoordTransformers :: Int -> CoordTransformers (Int, Int)
mkCoordTransformers sideLen =
CoordTransformers
{ flipVert = \f (r, c) -> f (sideLen - 1 - r, c)
, rotateCwQt = \f (r, c) -> f (sideLen - 1 - c, r)
}
type TileAlts = [(Int, Tile)]
allTransforms :: Tile -> TileAlts
allTransforms t0 = zip [0 ..] $ do
let CoordTransformers {flipVert, rotateCwQt} = mkCoordTransformers tileLen
t1 <- [t0, flipVert t0]
take 4 (iterate rotateCwQt t1)
type Udlr = ((Int, Int), (Int, Int))
tileEdges :: Tile -> Udlr
tileEdges t =
(
( decodeBinary $ fmap (\c -> t (0, c)) coords
, decodeBinary $ fmap (\c -> t (tileLen - 1, c)) coords
)
,
( decodeBinary $ fmap (\r -> t (r, 0)) coords
, decodeBinary $ fmap (\r -> t (r, tileLen - 1)) coords
)
)
tileEdgeNums :: Tile -> [(Int, Int)]
tileEdgeNums t = do
(i, t') <- allTransforms t
let ((u, d), (l, r)) = tileEdges t'
(i {- stands for a specific orientation for a tile -},) <$> [u, d, l, r]
prepareTileSolving ::
[TracedTile] ->
Int ->
IM.IntMap IS.IntSet ->
(Tile, IM.IntMap TileAlts, IS.IntSet)
prepareTileSolving
tracedTiles
topLeftTileId
edgeRepToTileIds =
( topLeftTile
, IM.union tmpL tmpR
, deadEdgeReps
)
where
initTracedTileAltsMap :: IM.IntMap TileAlts
initTracedTileAltsMap = IM.fromList $ do
(tId, tile) <- tracedTiles
pure (tId, allTransforms tile)
(tmpL, Just ts, tmpR) = IM.splitLookup topLeftTileId initTracedTileAltsMap
topLeftTile = head $ do
(_i, curTile) <- ts
let ((u, _d), (l, _r)) = tileEdges curTile
guard $ IS.member u deadEdgeReps && IS.member l deadEdgeReps
pure curTile
deadEdgeReps = IS.fromList $ do
-- compute edge reps that does not connect anything
(edgeRep, xs) <- IM.toList edgeRepToTileIds
guard $ IS.size xs == 1
pure edgeRep
type TileCoord = (Int, Int)
type TileSolution = M.Map TileCoord Tile
solveTiles :: IS.IntSet -> (Int, Int) -> IM.IntMap TileAlts -> TileSolution -> [TileSolution]
solveTiles deadEdgeReps (r, c) remainingTiles solution
| IM.null remainingTiles = [solution]
| otherwise = do
{-
Find an appropriate tile to put on row r, col c.
We want to solve in row-major order,
meaning we can assume (r-1,c) and (r,c-1) are already solved, if present.
for a tile to be put in that place:
- its top edge must match down edge of (r-1,c)
- its left edge must match right edge of (r,c-1)
-}
let mUpEdge, mLeftEdge :: Maybe Int
mUpEdge = do
guard $ r /= 0
let topTile = solution M.! (r - 1, c)
((_up, down), _) = tileEdges topTile
pure down
mLeftEdge = do
guard $ c /= 0
let leftTile = solution M.! (r, c - 1)
(_, (_left, right)) = tileEdges leftTile
pure right
(tileId, alts) <- IM.toList remainingTiles
(_, candidateTile) <- alts
let ((cUp, _cDown), (cLeft, cRight)) = tileEdges candidateTile
guard $ maybe True (== cUp) mUpEdge
guard $ maybe True (== cLeft) mLeftEdge
let solution' = M.insert (r, c) candidateTile solution
remainingTiles' = IM.delete tileId remainingTiles
nextCoord =
{-
this row is done if we ends up having right edige of (r,c)
that cannot be connected to any other tiles.
-}
if IS.member cRight deadEdgeReps
then (r + 1, 0)
else (r, c + 1)
solveTiles deadEdgeReps nextCoord remainingTiles' solution'
{-
verifies a solution and compute tile dimensions.
- a complete solution should form a rectangle
- to make things easier, it seems to be the case that we always end up
with a square. this function also verifies this assumption.
-}
verifyDims :: S.Set TileCoord -> Maybe (Int, Int)
verifyDims ts = do
let Just (Max maxR, Max maxC) = foldMap (\(r, c) -> Just (Max r, Max c)) ts
guard $ all (`S.member` ts) [(r, c) | r <- [0 .. maxR], c <- [0 .. maxC]]
guard $ maxR == maxC
pure (maxR + 1, maxC + 1)
type Sea = V.Vector (V.Vector Bool)
constructSea :: (Int, Int) -> M.Map TileCoord Tile -> Sea
constructSea (tileRows, tileCols) tiles = V.fromList (fmap V.fromList flattened)
where
flattened :: [[Bool]]
flattened =
concatMap
( \tileRow ->
fmap concat $
transpose $
fmap
(\tileCol -> unpackTile $ tiles M.! (tileRow, tileCol))
[0 .. tileCols - 1]
)
[0 .. tileRows - 1]
unpackTile :: Tile -> [[Bool]]
unpackTile t = do
fmap (\r -> fmap (\c -> t (r, c)) [1 .. tileLen - 2]) [1 .. tileLen - 2]
type SeaViewer = (Int, Int) -> Bool
-- Bidi short for bi-directional.
type SeaBidi =
( SeaViewer
, (Int, Int) -> (Int, Int) -- translates back to underlying coord.
)
mkSeaBidis :: Sea -> [SeaBidi]
mkSeaBidis sea = do
let directViewer (r, c) = sea V.! r V.! c
directBidi = (directViewer, id)
seaLen = V.length sea
CoordTransformers {flipVert, rotateCwQt} = mkCoordTransformers seaLen
sFlipVert :: SeaBidi -> SeaBidi
sFlipVert = bimap flipVert flipVert
sRotateCwQt :: SeaBidi -> SeaBidi
sRotateCwQt = bimap rotateCwQt rotateCwQt
v <- [directBidi, sFlipVert directBidi]
take 4 (iterate sRotateCwQt v)
seaMonsterDims :: (Int, Int)
seaMonsterParts :: S.Set (Int, Int)
(seaMonsterDims, seaMonsterParts) = (dims, parts)
where
dims = (length art, length (head art))
art =
[ " # "
, "# ## ## ###"
, " # # # # # # "
]
parts = S.fromList $ do
(r, row) <- zip [0 ..] art
(c, x) <- zip [0 ..] row
guard $ x == '#'
pure (r, c)
findSeaMonsters :: Int -> SeaBidi -> [S.Set (Int, Int)]
findSeaMonsters seaLen (viewer, backTranslate) = do
let (smRows, smCols) = seaMonsterDims
r0 <- takeWhile (\r' -> r' + smRows - 1 <= seaLen - 1) [0 ..]
c0 <- takeWhile (\c' -> c' + smCols - 1 <= seaLen - 1) [0 ..]
let translatedSm = S.map (bimap (+ r0) (+ c0)) seaMonsterParts
guard $ all viewer translatedSm
pure (S.map backTranslate translatedSm)
instance Solution Day20 where
solutionRun _ SolutionContext {getInputS, answerShow} = do
tracedTiles <- fmap parseTile . filter (not . null) . splitOn [""] . lines <$> getInputS
let tracedEdgeNums = (fmap . second) tileEdgeNums tracedTiles
edgeRepToTileIds = IM.fromListWith (<>) $ do
(i, ens) <- tracedEdgeNums
(_, en) <- ens
pure (en, IS.singleton i)
possibleConns = IM.fromListWith (<>) $ do
(_e, tileIdSet) <- IM.toList edgeRepToTileIds
(a, as) <- pickInOrder $ IS.toList tileIdSet
b <- as
[(a, IS.singleton b), (b, IS.singleton a)]
edgeTiles =
-- we can guess an edge tile if it only has 2 possible connections
filter (\(_v, es) -> IS.size es == 2) $ IM.toList possibleConns
edgeTileIds = fmap fst edgeTiles
-- it so happens that this is sufficient for both example and my input.
-- enforce that we have exactly 4 elements
[ topLeftTileId {- pick a random one as top-left corner -}
, _
, _
, _
] <-
pure edgeTileIds
-- just knowing what those 4 tiles are allows us to answer first question.
answerShow $ product edgeTileIds
let (orientedTopLeftTile, remainingTiles, deadEdgeReps) =
prepareTileSolving tracedTiles topLeftTileId edgeRepToTileIds
solvedTiles =
head $
solveTiles
deadEdgeReps
(0, 1)
remainingTiles
(M.singleton (0, 0) orientedTopLeftTile)
Just tileDims <- pure (verifyDims (M.keysSet solvedTiles))
let sea = constructSea tileDims solvedTiles
seaLen = V.length sea
monsters = do
bd <- mkSeaBidis sea
findSeaMonsters seaLen bd
allMonsterParts :: S.Set (Int, Int)
allMonsterParts = S.unions monsters
let visualize = False
when visualize $
forM_ (zip [0 :: Int ..] (V.toList sea)) $ \(r, rs) -> do
putStrLn
( fmap
( \(c, x) ->
if S.member (r, c) allMonsterParts
then 'O'
else bool '.' '#' x
)
$ zip [0 ..] (V.toList rs)
)
answerShow $ sum do
r <- [0 .. seaLen - 1]
c <- [0 .. seaLen - 1]
guard $ S.notMember (r, c) allMonsterParts
guard $ sea V.! r V.! c
pure (1 :: Int)