-
Notifications
You must be signed in to change notification settings - Fork 292
/
Copy pathdemo_sentence_piece.py
48 lines (42 loc) · 1.65 KB
/
demo_sentence_piece.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import scattertext as st
import tempfile
import sentencepiece as spm
convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df.text.apply(st.whitespace_nlp_with_sentences)
def train_sentence_piece_tokenizer(documents, vocab_size):
'''
:param documents: list-like, a list of str documents
:vocab_size int: the size of the vocabulary to output
:return sentencepiece.SentencePieceProcessor
'''
sp = None
with tempfile.NamedTemporaryFile(delete=True) as tempf:
with tempfile.NamedTemporaryFile(delete=True) as tempm:
tempf.write(('\n'.join(documents)).encode())
mod = spm.SentencePieceTrainer.Train('--input=%s --model_prefix=%s --vocab_size=%s'
% (tempf.name, tempm.name, vocab_size))
sp = spm.SentencePieceProcessor()
sp.load(tempm.name + '.model')
return sp
sp = train_sentence_piece_tokenizer(convention_df.text.values, 2000)
corpus = st.CorpusFromParsedDocuments(
convention_df,
parsed_col='parse',
category_col='party',
feats_from_spacy_doc=st.FeatsFromSentencePiece(sp)
).build()
html = st.produce_scattertext_explorer(
corpus,
category='democrat',
category_name='Democratic',
not_category_name='Republican',
sort_by_dist=False,
metadata=convention_df['party'] + ': ' + convention_df['speaker'],
term_scorer=st.RankDifference(),
transform=st.Scalers.dense_rank,
use_non_text_features=True,
use_full_doc=True,
)
file_name = 'demo_sentence_piece.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('Open ./%s in Chrome.' % (file_name))