-
Notifications
You must be signed in to change notification settings - Fork 292
/
Copy pathdemo_feature_importance.py
94 lines (79 loc) · 2.96 KB
/
demo_feature_importance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# currently in development
from collections import defaultdict
from time import time
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
from sklearn.utils import shuffle
import scattertext as st
movie_df = st.SampleCorpora.RottenTomatoes.get_data()
movie_df.category = movie_df.category \
.apply(lambda x: {'rotten': 'Negative', 'fresh': 'Positive', 'plot': 'Plot'}[x])
corpus = st.CorpusFromPandas(
movie_df,
category_col='category',
text_col='text',
nlp=st.whitespace_nlp_with_sentences
).build().get_unigram_corpus()
term_scorer = (st.ZScores(corpus).set_categories('Positive', ['Negative'], ['Plot']))
scores = term_scorer.get_scores()
pos_neg_mask = np.isin(corpus.get_category_names_by_row(), ['Positive', 'Negative'])
X = corpus.get_term_doc_mat()[pos_neg_mask]
y = corpus.get_category_names_by_row()[pos_neg_mask]
y = y == 'Positive'
X = X.multiply(scores).tocsr()
clf = RandomForestClassifier(n_estimators=50) # .fit(X, y)
# importances = clf.feature_importances_ * ((term_scorer.get_scores() > 0) * 2 - 1)
# import pdb; pdb.set_trace()
scores = defaultdict(list)
pred_diff = defaultdict(list)
n_feats = 100
kf = KFold(n_splits=2, shuffle=True)
n_iter = 0
t0 = time()
for train_idx, test_idx in kf.split(X):
print(n_iter)
X_train, X_test = X[train_idx], X[test_idx]
Y_train, Y_test = y[train_idx], y[test_idx]
print('fitting', time() - t0)
r = clf.fit(X_train, Y_train)
top_feats = np.argsort(-clf.feature_importances_)[:n_feats]
print('fit', time() - t0)
preds = clf.predict_proba(X_test).T[0]
acc = accuracy_score(Y_test, clf.predict(X_test))
print('acc', acc)
X_test = X_test.tolil()
for i, feati in enumerate(top_feats):
if i % 100 == 0: print(i, n_feats, time() - t0)
oldXfeat = X_test[:, feati]
X_test[:, feati] = shuffle(X_test[:, feati])
shuffle_preds = clf.predict_proba(X_test.tocsr()).T[0]
pred_diff[corpus.get_terms()[feati]] = (preds - shuffle_preds).sum()
shuff_acc = accuracy_score(Y_test, shuffle_preds > 0.5)
X_test[:, feati] = oldXfeat
scores[corpus.get_terms()[feati]].append((acc - shuff_acc) / acc)
print("Features sorted by their score:")
print(sorted([(round(np.mean(score), 4), feat) for
feat, score in scores.items()], reverse=True))
print("Features sorted by their pred diff:")
print(sorted([(round(np.mean(score), 4), feat) for
feat, score in pred_diff.items()], reverse=True))
term_scores = pd.Series(index=corpus.get_terms())
top_terms = pd.Series(scores).apply(np.mean)
term_scores.loc[top_terms.index] = top_terms.values
term_scores = term_scores.fillna(0)
html = st.produce_frequency_explorer(
corpus,
category='Positive',
not_categories=['Negative'],
neutral_categories=['Plot'],
scores=term_scores.values,
metadata=movie_df['movie_name'],
grey_threshold=0,
show_neutral=True
)
file_name = 'demo_rf.html'
open(file_name, 'wb').write(html.encode('utf-8'))
print('./' + file_name)