-
Notifications
You must be signed in to change notification settings - Fork 4
/
trial.py
264 lines (219 loc) · 9.57 KB
/
trial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# import numpy as np
# def read_csv ( csv_path ):
# np_path_XYs = np . genfromtxt ( csv_path , delimiter = ',')
# path_XYs = []
# for i in np . unique ( np_path_XYs [: , 0]):
# npXYs = np_path_XYs [ np_path_XYs [: , 0] == i ][: , 1:]
# XYs = []
# for j in np . unique ( npXYs [: , 0]):
# XY = npXYs [ npXYs [: , 0] == j ][: , 1:]
# XYs . append ( XY )
# path_XYs . append ( XYs )
# return path_XYs
# import numpy as np
# import matplotlib . pyplot as plt
# def plot ( paths_XYs ):
# fig , ax = plt . subplots ( tight_layout = True , figsize =(8 , 8))
# for i , XYs in enumerate ( paths_XYs ):
# # c = colours [ i % len( colours )]
# for XY in XYs :
# ax . plot ( XY [: , 0] , XY [: , 1] , linewidth =2)
# ax . set_aspect ( "equal")
# plt . show ()
# a = read_csv("shapes_coordinates.csv")
# plot(a)
# import numpy as np
# import svgwrite
# import cairosvg
# def polylines2svg(paths_XYs, svg_path):
# W, H = 0, 0
# for path_XYs in paths_XYs:
# for XY in path_XYs:
# W, H = max(W, np.max(XY[:, 0])), max(H, np.max(XY[:, 1]))
# padding = 0.1
# W, H = int(W + padding * W), int(H + padding * H)
# # Create a new SVG drawing
# dwg = svgwrite.Drawing(svg_path, profile="tiny", shape_rendering="crispEdges")
# group = dwg.g()
# colors = ["red", "blue", "green", "yellow", "purple", "orange", "cyan", "magenta"]
# for i, path in enumerate(paths_XYs):
# path_data = []
# for XY in path:
# path_data.append("M {} {}".format(XY[0, 0], XY[0, 1]))
# for j in range(1, len(XY)):
# path_data.append("L {} {}".format(XY[j, 0], XY[j, 1]))
# if not np.allclose(XY[0], XY[-1]):
# path_data.append("Z")
# c = colors[i%len(colors)]
# group.add(dwg.path(d=" ".join(path_data), fill=c, stroke="none", stroke_width=2))
# dwg.add(group)
# dwg.save()
# png_path = svg_path.replace('.svg', '.png')
# fact = 1
# if min(H,W)!=0: fact = max(1, 1024 // min(H, W))
# # cairosvg.svg2png(url=svg_path, write_to=png_path, parent_width=W, parent_height=H, output_width=fact * W, output_height=fact * H, background_color='white')
# # print(a[:1])
# polylines2svg(a, "hello.svg")import pandas as pd
import pandas as pd
import numpy as np
import cv2
from scipy.interpolate import UnivariateSpline, interp1d
# Smoothing function
def smooth_points(x, y, s=0):
spline_x = UnivariateSpline(range(len(x)), x, s=s)
spline_y = UnivariateSpline(range(len(y)), y, s=s)
return spline_x(range(len(x))), spline_y(range(len(y)))
# Interpolation function
def interpolate_points(x, y, num_points):
t = np.linspace(0, 1, len(x))
f_x = interp1d(t, x, kind='linear')
f_y = interp1d(t, y, kind='linear')
t_new = np.linspace(0, 1, num_points)
return f_x(t_new), f_y(t_new)
# Convert points to image
def points_to_image(points, width=1000, height=1000):
img = np.zeros((height, width), dtype=np.uint8)
for x, y in points:
if 0 <= int(y) < height and 0 <= int(x) < width:
img[int(y), int(x)] = 255
return img
# Detect shapes
def detect_shapes(img):
shapes = []
edges = cv2.Canny(img.copy(), 0, 50)
edges_line = cv2.GaussianBlur(edges.copy(), (15, 15), 0)
lines = cv2.HoughLinesP(edges_line, 1, np.pi / 2, threshold=200, minLineLength=0, maxLineGap=100)
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
shapes.append(("Line", np.array([[x1, y1], [x2, y2]])))
contours, _ = cv2.findContours(img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
if cv2.contourArea(contour) < 500:
continue
epsilon = 0.03 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
area1 = cv2.contourArea(approx)
area2 = cv2.contourArea(contour)
if len(approx) == 3:
shapes.append(("Triangle", approx))
elif len(approx) == 4:
(x, y, w, h) = cv2.boundingRect(approx)
aspect_ratio = w / float(h)
shape = "Square" if 0.85 <= aspect_ratio <= 1.15 else "Rectangle"
shapes.append((shape, approx))
elif len(approx) > 4:
area = cv2.contourArea(contour)
(x, y), radius = cv2.minEnclosingCircle(contour)
circularity = area / (np.pi * radius * radius)
if 0.70 <= circularity <= 1.3:
center = (int(x), int(y))
radius = int(radius)
shapes.append(("Circle", (center, radius)))
else:
if 1.05 * area2 >= area1 >= 0.95 * area2:
shapes.append(("Polygon", approx))
if len(approx) >= 6:
ellipse = cv2.fitEllipse(contour)
center, axes, angle = ellipse
axes = (int(axes[0] / 2), int(axes[1] / 2))
ellipse_contour = cv2.ellipse2Poly(
center=(int(center[0]), int(center[1])),
axes=axes,
angle=int(angle),
arcStart=0,
arcEnd=360,
delta=5
)
ellipse_contour = np.array(ellipse_contour)
distance = cv2.pointPolygonTest(ellipse_contour, center, True)
if abs(distance) < 40:
shapes.append(("Ellipse", ellipse_contour))
if len(approx) == 10:
shapes.append(("Star", approx))
shape_priorities = {"Circle": 1, "Square": 2, "Rectangle": 3, "Triangle": 4, "Ellipse": 5,"Star": 6, "Polygon": 7,
"Line": 8}
if shapes:
shapes = sorted(shapes, key=lambda s: shape_priorities.get(s[0], 9))
most_probable_shape = shapes[0]
return [most_probable_shape]
return shapes
def draw_shapes(img, shapes, curve_points=None):
if len(img.shape) == 2:
img_color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_color = img.copy()
blank_image = np.zeros_like(img_color)
shape_coords = []
if shapes:
for shape, contour in shapes:
color = (255, 255, 255) # White
if shape == "Circle":
center, radius = contour
# Generate points for the circle
num_points = 100
angle = np.linspace(0, 2 * np.pi, num_points)
circle_points = np.array([
(int(center[0] + radius * np.cos(a)), int(center[1] + radius * np.sin(a)))
for a in angle
])
cv2.polylines(blank_image, [circle_points], isClosed=True, color=color, thickness=1)
shape_coords.append(("Circle", circle_points))
else:
cv2.drawContours(blank_image, [contour], -1, color, 1)
coords = contour.squeeze()
shape_coords.append((shape, coords))
else:
if curve_points is not None:
color = (255, 255, 255) # White
cv2.polylines(blank_image, [curve_points], isClosed=False, color=color, thickness=1)
shape_coords.append(("Curve", curve_points))
return blank_image, shape_coords
def combine_images(images, positions, width=1000, height=1000):
combined_image = np.zeros((height, width, 3), dtype=np.uint8)
for img, (x, y) in zip(images, positions):
h, w = img.shape[:2]
x = max(0, min(x, width - w))
y = max(0, min(y, height - h))
mask = img != 0
combined_image[y:y + h, x:x + w][mask] = img[mask]
return combined_image
# Initialize lists for storing results
processed_curves = []
images = []
positions = []
output_data = []
# Load data into a DataFrame
df = pd.read_csv("trash/tc/occlusion2.csv", header=None, names=['Curve', 'Shape', 'X', 'Y'])
# Group by curve
curves = df.groupby(['Curve', 'Shape'])
for curve_id, group in curves:
x, y = group['X'].values, group['Y'].values
x_smooth, y_smooth = smooth_points(x, y, s=0)
x_interp, y_interp = interpolate_points(x_smooth, y_smooth, num_points=1000)
pos_x, pos_y = int(x.min()), int(y.min())
points = np.vstack((x_interp, y_interp)).T
positions.append((int(x.min()), int(y.min())))
img = points_to_image(points)
shapes = detect_shapes(img)
img_with_shapes, shape_coords = draw_shapes(img, shapes, curve_points=np.int32(points))
images.append(img_with_shapes)
# Store shape coordinates
for shape_type, coords in shape_coords:
if shape_type == "Curve":
# Ensure coordinates are flattened properly
for ix,iy in coords:
output_data.append([curve_id[0], curve_id[1],ix,iy])
else:
for pt in coords:
# Ensure point coordinates are flattened properly
ix,iy = pt.flatten().tolist()
output_data.append([curve_id[0], curve_id[1], ix, iy])
# Combine all images into one large image
combined_image = combine_images(images, positions, width=1000, height=1000)
cv2.imwrite("combined_shapes.png", combined_image)
# print(output_data)
# Save the coordinates to a CSV file
# columns = ["ShapeType", "CurveID", "X", "Y"]
# df_output = pd.DataFrame(output_data, columns=columns)
# df_output.to_csv("shapes_coordinates.csv", index=False)