-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
106 lines (86 loc) · 3.92 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# USAGE
# python3 train_model.py --recognizer output/recognizer.joblib --le output/le.joblib
# import the necessary packages
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC
from imutils import paths
import argparse
import imutils
import cv2
import joblib
import os
import numpy as np
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-r", "--recognizer", required=True,
help="path to output model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
help="path to output label encoder")
args = vars(ap.parse_args())
# load serialized face detector
print("Loading Face Detector...")
protoPath = "face_detection_model/deploy.prototxt"
modelPath = "face_detection_model/res10_300x300_ssd_iter_140000.caffemodel"
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)
# load serialized face embedding model
print("Loading Face Recognizer...")
embedder = cv2.dnn.readNetFromTorch("openface_nn4.small2.v1.t7")
# grab the paths to the input images in our dataset
print("Quantifying Faces...")
imagePaths = list(paths.list_images("dataset"))
# initialize our lists of extracted facial embeddings and corresponding people names
knownEmbeddings = []
knownNames = []
# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
# extract the person name from the image path
if (i % 50 == 0):
print("Processing image {}/{}".format(i, len(imagePaths)))
name = imagePath.split(os.path.sep)[-2]
# load the image, resize it, and perform face detection
image = cv2.imread(imagePath)
image = imutils.resize(image, width=600)
(h, w) = image.shape[:2]
# construct a blob from the image
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)
# apply face detection
detector.setInput(imageBlob)
detections = detector.forward()
# check if at least one face was found
if len(detections) > 0:
# we're making the assumption that each image has only ONE face, so find the bounding box with the largest probability
i = np.argmax(detections[0, 0, :, 2])
confidence = detections[0, 0, i, 2]
# ensure that the detection with the largest probability also means our minimum probability test (thus helping filter out weak detections)
if confidence > 0.5:
# compute the (x, y)-coordinates of the bounding box for the face
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# extract the face ROI and grab the ROI dimensions
face = image[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
# ensure the face width and height are sufficiently large
if fW >= 20 and fH >= 20:
# construct a blob for the face ROI, then pass the blob through our face embedding model to obtain the 128-d quantification of the face
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
(96, 96), (0, 0, 0), swapRB=True, crop=False)
embedder.setInput(faceBlob)
vec = embedder.forward()
# add the name of the person + corresponding face embedding to their respective lists
knownNames.append(name)
knownEmbeddings.append(vec.flatten())
# encode the labels
print("[INFO] encoding labels...")
le = LabelEncoder()
labels = le.fit_transform(knownNames)
# train the model used to accept the 128-d embeddings of the face and
# then produce the actual face recognition
print("[INFO] training model...")
recognizer = SVC(C=1.0, kernel="linear", probability=True)
recognizer.fit(knownEmbeddings, labels)
# write the actual face recognition model to disk
joblib.dump(recognizer, args["recognizer"])
# write the label encoder to disk
joblib.dump(le, args["le"])