forked from mrecachinas/beer-to-cats
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classify_func.py
45 lines (36 loc) · 1.52 KB
/
classify_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os,sys,Image,dlib,random
from skimage import io
import numpy as np
# print "\nTest1 accuracy: ", dlib.test_simple_object_detector('/home/jyotiska/Dropbox/Computer Vision/cupdataset_2_test.xml',"cupdetector_2.svm")
# print "\nTraining accuracy: ", dlib.test_simple_object_detector('/home/jyotiska/Dropbox/Computer Vision/cupdataset_3.xml',"cupdetector_3.svm")
detector = dlib.simple_object_detector("cupdetector_4.svm")
# win_det = dlib.image_window()
# win_det.set_image(detector)
# win = dlib.image_window()
# test_dir = '/home/jyotiska/Dropbox/Computer Vision/Cups_test'
# convert_dir = '/home/jyotiska/Dropbox/Computer Vision/Cups_test_convert'
assorted_dir = 'ItemBucket/'
items =os.listdir(assorted_dir)
def classify(img):
dets = detector(img)
background = Image.fromarray(np.array(img))
for d in dets:
x = d.left()
y = d.top()
width = d.right() - x
height = d.bottom() - y
print ">> detection position left,top,right,bottom:", d.left(), d.top(), d.right(), d.bottom()
r = random.randint(0,len(items)-1)
random_item = Image.open(assorted_dir+"/"+items[r])
resized = random_item.resize( (int(1.2*width),int(1.2*height)) )
background.paste(resized, (d.left()-12,d.top()-10), resized)
return background
if __name__ == '__main__':
if len(sys.argv) != 2:
print 'Usage: python '+sys.argv[0]+' <image.{png,jpg,jpeg,gif}>'
sys.exit()
in_image = sys.argv[1]
in_img = io.imread(in_image)
out_img = classify(in_img)
out_img.save(in_image.split('.')[0]+'-out.jpg')
out_img.show()