Table of Contents
Defined in header sfl/small_unordered_flat_set.hpp
:
namespace sfl
{
template < typename Key,
std::size_t N,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = std::allocator<Key> >
class small_unordered_flat_set;
}
sfl::small_unordered_flat_set
is an associative container that contains unsorted set of unique objects of type Key
.
Underlying storage is implemented as unsorted vector.
Complexity of search, insert and remove operations is O(N).
This container internally holds statically allocated array of size N
and stores elements into this array until the number of elements is not greater than N
, which avoids dynamic memory allocation and deallocation. The dynamic memory management is used when the number of elements has to be greater than N
.
Elements of this container are always stored contiguously in the memory.
Iterators to elements are random access iterators and they meet the requirements of LegacyRandomAccessIterator.
sfl::small_unordered_flat_set
meets the requirements of Container, AllocatorAwareContainer and ContiguousContainer. The requirements of UnorderedAssociativeContainer are partionally met (this container doesn't use Hash).
-
typename Key
Key type.
-
std::size_t N
Size of the internal statically allocated array, i.e. the maximal number of elements that can fit into this array.
This parameter can be zero.
-
typename KeyEqual
Function for comparing keys.
-
typename Allocator
Allocator used for memory allocation/deallocation and construction/destruction of elements.
This type must meet the requirements of Allocator.
The program is ill-formed if
Allocator::value_type
is not the same asKey
.
Member Type | Definition |
---|---|
allocator_type |
Allocator |
allocator_traits |
std::allocator_traits<allocator_type> |
key_type |
Key |
value_type |
Key |
size_type |
typename allocator_traits::size_type |
difference_type |
typename allocator_traits::difference_type |
key_equal |
KeyEqual |
reference |
value_type& |
const_reference |
const value_type& |
pointer |
typename allocator_traits::pointer |
const_pointer |
typename allocator_traits::const_pointer |
iterator |
LegacyRandomAccessIterator and LegacyContiguousIterator to const value_type |
const_iterator |
LegacyRandomAccessIterator and LegacyContiguousIterator to const value_type |
static constexpr size_type static_capacity = N;
-
small_unordered_flat_set() noexcept( std::is_nothrow_default_constructible<Allocator>::value && std::is_nothrow_default_constructible<KeyEqual>::value );
-
explicit small_unordered_flat_set(const KeyEqual& equal) noexcept( std::is_nothrow_default_constructible<Allocator>::value && std::is_nothrow_copy_constructible<KeyEqual>::value );
-
explicit small_unordered_flat_set(const Allocator& alloc) noexcept( std::is_nothrow_copy_constructible<Allocator>::value && std::is_nothrow_default_constructible<KeyEqual>::value );
-
explicit small_unordered_flat_set(const KeyEqual& equal, const Allocator& alloc) noexcept( std::is_nothrow_copy_constructible<Allocator>::value && std::is_nothrow_copy_constructible<KeyEqual>::value );
Effects: Constructs an empty container.
-
template <typename InputIt> small_unordered_flat_set(InputIt first, InputIt last);
-
template <typename InputIt> small_unordered_flat_set(InputIt first, InputIt last, const KeyEqual& equal);
-
template <typename InputIt> small_unordered_flat_set(InputIt first, InputIt last, const Allocator& alloc);
-
template <typename InputIt> small_unordered_flat_set(InputIt first, InputIt last, const KeyEqual& equal, const Allocator& alloc);
Effects: Constructs the container with the contents of the range
[first, last)
.If multiple elements in the range have keys that compare equivalent, then the first element is inserted.
Note: This overload participates in overload resolution only if
InputIt
satisfies requirements of LegacyInputIterator. -
small_unordered_flat_set(std::initializer_list<value_type> ilist);
-
small_unordered_flat_set(std::initializer_list<value_type> ilist, const KeyEqual& equal);
-
small_unordered_flat_set(std::initializer_list<value_type> ilist, const Allocator& alloc);
-
small_unordered_flat_set(std::initializer_list<value_type> ilist, const KeyEqual& equal, const Allocator& alloc);
Effects: Constructs the container with the contents of the initializer list
ilist
.If multiple elements in the range have keys that compare equivalent, then the first element is inserted.
-
small_unordered_flat_set(const small_unordered_flat_set& other);
-
small_unordered_flat_set(const small_unordered_flat_set& other, const Allocator& alloc);
Effects: Copy constructor. Constructs the container with the copy of the contents of
other
.Complexity: Linear in
other.size()
. -
small_unordered_flat_set(small_unordered_flat_set&& other);
-
small_unordered_flat_set(small_unordered_flat_set&& other, const Allocator& alloc);
Effects: Move constructor. Constructs the container with the contents of
other
using move semantics.other
is not guaranteed to be empty after the move.other
is in a valid but unspecified state after the move.Complexity: Constant in the best case. Linear in
N
in the worst case. -
template <typename Range> small_unordered_flat_set(sfl::from_range_t, Range&& range);
-
template <typename Range> small_unordered_flat_set(sfl::from_range_t, Range&& range, const KeyEqual& equal);
-
template <typename Range> small_unordered_flat_set(sfl::from_range_t, Range&& range, const Allocator& alloc);
-
template <typename Range> small_unordered_flat_set(sfl::from_range_t, Range&& range, const KeyEqual& equal, const Allocator& alloc);
Effects: Constructs the container with the contents of
range
.If multiple elements in the range have keys that compare equivalent, then the first element is inserted.
Note: It is available in C++11. In C++20 are used proper C++20 range concepts.
-
~small_unordered_flat_set();
Effects: Destructs the container. The destructors of the elements are called and the used storage is deallocated.
Complexity: Linear in
size()
.
-
small_unordered_flat_set& operator=(const small_unordered_flat_set& other);
Effects: Copy assignment operator. Replaces the contents with a copy of the contents of
other
.Returns:
*this()
.Complexity: Linear in
this->size()
plus linear inother.size()
. -
small_unordered_flat_set& operator=(small_unordered_flat_set&& other);
Effects: Move assignment operator. Replaces the contents with those of
other
using move semantics.other
is not guaranteed to be empty after the move.other
is in a valid but unspecified state after the move.Returns:
*this()
.Complexity:
- The best case: Linear in
this->size()
plus constant. - The worst case: Linear in
this->size()
plus linear inother.size()
.
- The best case: Linear in
-
small_unordered_flat_set& operator=(std::initializer_list<Key> ilist);
Effects: Replaces the contents with those identified by initializer list
ilist
.Returns:
*this()
.Complexity: Linear in
this->size()
plus linear inilist.size()
.
-
allocator_type get_allocator() const noexcept;
Effects: Returns the allocator associated with the container.
Complexity: Constant.
-
key_equal key_eq() const;
Effects: Returns the function object that compares keys for equality, which is a copy of this container's constructor argument
equal
.Complexity: Constant.
-
iterator begin() noexcept;
-
const_iterator begin() const noexcept;
-
const_iterator cbegin() const noexcept;
Effects: Returns an iterator to the first element of the container. If the container is empty, the returned iterator will be equal to
end()
.Complexity: Constant.
-
iterator end() noexcept;
-
const_iterator end() const noexcept;
-
const_iterator cend() const noexcept;
Effects: Returns an iterator to the element following the last element of the container. This element acts as a placeholder; attempting to access it results in undefined behavior.
Complexity: Constant.
-
iterator nth(size_type pos) noexcept;
-
const_iterator nth(size_type pos) const noexcept;
Preconditions:
pos <= size()
Effects: Returns an iterator to the element at position
pos
.If
pos == size()
, the returned iterator is equal toend()
.Complexity: Constant.
-
size_type index_of(const_iterator pos) const noexcept;
Preconditions:
cbegin() <= pos && pos <= cend()
Effects: Returns position of the element pointed by iterator
pos
, i.e.std::distance(begin(), pos)
.If
pos == end()
, the returned value is equal tosize()
.Complexity: Constant.
-
bool empty() const noexcept;
Effects: Returns
true
if the container has no elements, i.e. whetherbegin() == end()
.Complexity: Constant.
-
size_type size() const noexcept;
Effects: Returns the number of elements in the container, i.e.
std::distance(begin(), end())
.Complexity: Constant.
-
size_type max_size() const noexcept;
Effects: Returns the maximum number of elements the container is able to hold, i.e.
std::distance(begin(), end())
for the largest container.Complexity: Constant.
-
size_type capacity() const noexcept;
Effects: Returns the number of elements that the container has currently allocated space for.
Complexity: Constant.
-
size_type available() const noexcept;
Effects: Returns the number of elements that can be inserted into the container without requiring allocation of additional memory.
Complexity: Constant.
-
void reserve(size_type new_cap);
Effects: Tries to increase capacity by allocating additional memory.
If
new_cap > capacity()
, the function allocates memory for new storage of capacity equal to the value ofnew_cap
, moves elements from old storage to new storage, and deallocates memory used by old storage. Otherwise, the function does nothing.This function does not change size of the container.
If the capacity is changed, all iterators and all references to the elements are invalidated. Otherwise, no iterators or references are invalidated.
Complexity: Linear.
Exceptions:
Allocator::allocate
may throw.T
's move or copy constructor may throw.
If an exception is thrown:
- If type
T
has availablenoexcept
move constructor:- This function has no effects (strong exception guarantee).
- Else if type
T
has available copy constructor:- This function has no effects (strong exception guarantee).
- Else if type
T
has available throwing move constructor:- Container is changed but in valid state (basic exception guarantee).
-
void shrink_to_fit();
Effects: Tries to reduce memory usage by freeing unused memory.
-
If
size() > N && size() < capacity()
, the function allocates memory for new storage of capacity equal to the value ofsize()
, moves elements from old storage to new storage, and deallocates memory used by old storage. -
If
size() <= N && N < capacity()
, the function sets new storage to be internal statically allocated array of capacityN
, moves elements from old storage to new storage, and deallocates memory used by old storage. -
Otherwise the function does nothing.
This function does not change size of the container.
If the capacity is changed, all iterators and all references to the elements are invalidated. Otherwise, no iterators or references are invalidated.
Complexity: Linear.
Exceptions:
Allocator::allocate
may throw.T
's move or copy constructor may throw.
If an exception is thrown:
- If type
T
has availablenoexcept
move constructor:- This function has no effects (strong exception guarantee).
- Else if type
T
has available copy constructor:- This function has no effects (strong exception guarantee).
- Else if type
T
has available throwing move constructor:- Container is changed but in valid state (basic exception guarantee).
-
-
void clear() noexcept;
Effects: Erases all elements from the container. After this call,
size()
returns zero andcapacity()
remains unchanged.Complexity: Linear in
size()
.
-
template <typename... Args> std::pair<iterator, bool> emplace(Args&&... args);
Effects: Inserts new element into the container if the container doesn't already contain an element with an equivalent key.
New element is constructed as
value_type(std::forward<Args>(args)...)
.The element may be constructed even if there already is an element with the key in the container, in which case the newly constructed element will be destroyed immediately.
Returns: The iterator component points to the inserted element or to the already existing element. The
bool
component istrue
if insertion happened andfalse
if it did not.
-
template <typename... Args> iterator emplace_hint(const_iterator hint, Args&&... args);
Preconditions:
cbegin() <= hint && hint <= cend()
Effects: Inserts new element into the container if the container doesn't already contain an element with an equivalent key.
New element is constructed as
value_type(std::forward<Args>(args)...)
.The element may be constructed even if there already is an element with the key in the container, in which case the newly constructed element will be destroyed immediately.
Iterator
hint
is used as a suggestion where to start to search insert position.Iterator
hint
is ignored due to container's underlying storage implementation. This overload exists just to have this container compatible with standard C++ containers as much as possible.Returns: Iterator to the inserted element or to the already existing element.
-
std::pair<iterator, bool> insert(const value_type& value);
Effects: Inserts copy of
value
if the container doesn't already contain an element with an equivalent key.Returns: The iterator component points to the inserted element or to the already existing element. The
bool
component istrue
if insertion happened andfalse
if it did not. -
std::pair<iterator, bool> insert(value_type&& value);
Effects: Inserts
value
using move semantics if the container doesn't already contain an element with an equivalent key.Returns: The iterator component points to the inserted element or to the already existing element. The
bool
component istrue
if insertion happened andfalse
if it did not. -
template <typename K> std::pair<iterator, bool> insert(K&& x);
Effects: Inserts new element if the container doesn't already contain an element with a key equivalent to
x
.New element is constructed as
value_type(std::forward<K>(x))
.Note: This overload participates in overload resolution only if
KeyEqual::is_transparent
exists and is a valid type. It allows calling this function without constructing an instance ofKey
.Returns: The iterator component points to the inserted element or to the already existing element. The
bool
component istrue
if insertion happened andfalse
if it did not. -
iterator insert(const_iterator hint, const value_type& value);
Preconditions:
cbegin() <= hint && hint <= cend()
Effects: Inserts copy of
value
if the container doesn't already contain an element with an equivalent key.Iterator
hint
is used as a suggestion where to start to search insert position.Iterator
hint
is ignored due to container's underlying storage implementation. This overload exists just to have this container compatible with standard C++ containers as much as possible.Returns: Iterator to the inserted element or to the already existing element.
-
iterator insert(const_iterator hint, value_type&& value);
Preconditions:
cbegin() <= hint && hint <= cend()
Effects: Inserts
value
using move semantics if the container doesn't already contain an element with an equivalent key.Iterator
hint
is used as a suggestion where to start to search insert position.Iterator
hint
is ignored due to container's underlying storage implementation. This overload exists just to have this container compatible with standard C++ containers as much as possible.Returns: Iterator to the inserted element or to the already existing element.
-
template <typename K> iterator insert(const_iterator hint, K&& x);
Preconditions:
cbegin() <= hint && hint <= cend()
Effects: Inserts new element if the container doesn't already contain an element with a key equivalent to
x
.New element is constructed as
value_type(std::forward<K>(x))
.Iterator
hint
is used as a suggestion where to start to search insert position.Iterator
hint
is ignored due to container's underlying storage implementation. This overload exists just to have this container compatible with standard C++ containers as much as possible.Note: This overload participates in overload resolution only if all following conditions are satisfied:
KeyEqual::is_transparent
exists and is a valid type. It allows calling this function without constructing an instance ofKey
.std::is_convertible_v<K&&, iterator>
isfalse
.std::is_convertible_v<K&&, const_iterator>
isfalse
.
Returns: Iterator to the inserted element or to the already existing element.
-
template <typename InputIt> void insert(InputIt first, InputIt last);
Effects: Inserts elements from range
[first, last)
if the container doesn't already contain an element with an equivalent key.If multiple elements in the range have keys that compare equivalent, then the first element is inserted.
The call to this function is equivalent to:
while (first != last) { insert(*first); ++first; }
Note: This overload participates in overload resolution only if
InputIt
satisfies requirements of LegacyInputIterator. -
void insert(std::initializer_list<value_type> ilist);
Effects: Inserts elements from initializer list
ilist
if the container doesn't already contain an element with an equivalent key.If multiple elements in the range have keys that compare equivalent, then the first element is inserted.
The call to this function is equivalent to
insert(ilist.begin(), ilist.end())
.
-
template <typename Range> void insert_range(Range&& range);
Effects: Inserts elements from
range
if the container doesn't already contain an element with an equivalent key.If multiple elements in the range have keys that compare equivalent, then the first element is inserted.
Note: It is available in C++11. In C++20 are used proper C++20 range concepts.
-
iterator erase(iterator pos);
-
iterator erase(const_iterator pos);
Preconditions:
cbegin() <= pos && pos < cend()
Effects: Removes the element at
pos
.Returns: Iterator following the last removed element.
-
iterator erase(const_iterator first, const_iterator last);
Preconditions:
cbegin() <= first && first <= last && last <= cend()
Effects: Removes the elements in the range
[first, last)
.Returns: Iterator following the last removed element.
-
size_type erase(const Key& key);
-
template <typename K> size_type erase(K&& x);
Effects: Removes the element (if one exists) with the key equivalent to
key
orx
.Note: Overload (5) participates in overload resolution only if
KeyEqual::is_transparent
exists and is a valid type. It allows calling this function without constructing an instance ofKey
.Returns: Number of elements removed (0 or 1).
-
void swap(small_unordered_flat_set& other);
Preconditions:
allocator_traits::propagate_on_container_swap::value || get_allocator() == other.get_allocator()
Effects: Exchanges the contents of the container with those of
other
.Complexity: Constant in the best case. Linear in
this->size()
plus linear inother.size()
in the worst case.
-
iterator find(const Key& key);
-
const_iterator find(const Key& key) const;
-
template <typename K> iterator find(const K& x);
-
template <typename K> const_iterator find(const K& x) const;
Effects: Returns an iterator pointing to the element with key equivalent to
key
orx
. Returnsend()
if no such element is found.Note: Overloads (3) and (4) participate in overload resolution only if
KeyEqual::is_transparent
exists and is a valid type. It allows calling these functions without constructing an instance ofKey
.Complexity: Constant in the best case. Linear in
size()
in the worst case.
-
size_type count(const Key& key) const;
-
template <typename K> size_type count(const K& x) const;
Effects: Returns the number of elements with key equivalent to
key
orx
, which is either 1 or 0 since this container does not allow duplicates.Note: Overload (2) participates in overload resolution only if
KeyEqual::is_transparent
exists and is a valid type. It allows calling this function without constructing an instance ofKey
.Complexity: Constant in the best case. Linear in
size()
in the worst case.
-
bool contains(const Key& key) const;
-
template <typename K> bool contains(const K& x) const;
Effects: Returns
true
if the container contains an element with key equivalent tokey
orx
, otherwise returnsfalse
.Note: Overload (2) participates in overload resolution only if
KeyEqual::is_transparent
exists and is a valid type. It allows calling this function without constructing an instance ofKey
.Complexity: Constant in the best case. Linear in
size()
in the worst case.
-
value_type* data() noexcept;
-
const value_type* data() const noexcept;
Effects: Returns pointer to the underlying array serving as element storage. The pointer is such that range
[data(), data() + size())
is always a valid range, even if the container is empty.data()
is not dereferenceable if the container is empty.Complexity: Constant.
-
template <typename K, std::size_t N, typename E, typename A> bool operator== ( const small_unordered_flat_set<K, N, E, A>& x, const small_unordered_flat_set<K, N, E, A>& y );
Effects: Checks if the contents of
x
andy
are equal.The contents of
x
andy
are equal if the following conditions hold:x.size() == y.size()
- For each element in
x
there is equal element iny
.
The comparison is performed by
std::is_permutation
. This comparison ignores the container'sKeyEqual
function.Returns:
true
if the contents of thex
andy
are equal,false
otherwise.
-
template <typename K, std::size_t N, typename E, typename A> bool operator!= ( const small_unordered_flat_set<K, N, E, A>& x, const small_unordered_flat_set<K, N, E, A>& y );
Effects: Checks if the contents of
x
andy
are equal.For details see
operator==
.Returns:
true
if the contents of thex
andy
are not equal,false
otherwise.
-
template <typename K, std::size_t N, typename E, typename A> void swap ( small_unordered_flat_set<K, N, E, A>& x, small_unordered_flat_set<K, N, E, A>& y );
Effects: Swaps the contents of
x
andy
. Callsx.swap(y)
.
-
template <typename K, std::size_t N, typename E, typename A, typename Predicate> typename small_unordered_flat_set<K, N, E, A>::size_type erase_if(small_unordered_flat_set<K, N, E, A>& c, Predicate pred);
Effects: Erases all elements that satisfy the predicate
pred
from the container.pred
is unary predicate which returnstrue
if the element should be removed.Returns: The number of erased elements.
Complexity: Linear.
End of document.