-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
345 lines (303 loc) · 14.6 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/******************************************************************************
* File Name: main.c
*
* Description: This is the source code for the PSoC4 - GPIO Pins example
* for ModusToolbox.
*
* Related Document: See README.md
*
*
*******************************************************************************
* Copyright 2020-2024, Cypress Semiconductor Corporation (an Infineon company) or
* an affiliate of Cypress Semiconductor Corporation. All rights reserved.
*
* This software, including source code, documentation and related
* materials ("Software") is owned by Cypress Semiconductor Corporation
* or one of its affiliates ("Cypress") and is protected by and subject to
* worldwide patent protection (United States and foreign),
* United States copyright laws and international treaty provisions.
* Therefore, you may use this Software only as provided in the license
* agreement accompanying the software package from which you
* obtained this Software ("EULA").
* If no EULA applies, Cypress hereby grants you a personal, non-exclusive,
* non-transferable license to copy, modify, and compile the Software
* source code solely for use in connection with Cypress's
* integrated circuit products. Any reproduction, modification, translation,
* compilation, or representation of this Software except as specified
* above is prohibited without the express written permission of Cypress.
*
* Disclaimer: THIS SOFTWARE IS PROVIDED AS-IS, WITH NO WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, NONINFRINGEMENT, IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress
* reserves the right to make changes to the Software without notice. Cypress
* does not assume any liability arising out of the application or use of the
* Software or any product or circuit described in the Software. Cypress does
* not authorize its products for use in any products where a malfunction or
* failure of the Cypress product may reasonably be expected to result in
* significant property damage, injury or death ("High Risk Product"). By
* including Cypress's product in a High Risk Product, the manufacturer
* of such system or application assumes all risk of such use and in doing
* so agrees to indemnify Cypress against all liability.
*******************************************************************************/
#include "cy_pdl.h"
#include "cybsp.h"
/*******************************************************************************
* Macros
********************************************************************************/
#if defined COMPONENT_PSOC4HVMS128K || COMPONENT_PSOC4HVMS64K
#define CYBSP_REFERENCE_GPIO_PORT GPIO_PRT0
#define CYBSP_REFERENCE_GPIO_NUM 2
#define CYBSP_REFERENCE_GPIO_HSIOM ioss_0_port_0_pin_2_HSIOM
#ifndef ioss_0_port_0_pin_2_HSIOM
#define ioss_0_port_0_pin_2_HSIOM HSIOM_SEL_GPIO
#endif
#else
#define CYBSP_REFERENCE_GPIO_PORT GPIO_PRT2
#define CYBSP_REFERENCE_GPIO_NUM 0
#define CYBSP_REFERENCE_GPIO_HSIOM ioss_0_port_2_pin_0_HSIOM
#ifndef ioss_0_port_2_pin_0_HSIOM
#define ioss_0_port_2_pin_0_HSIOM HSIOM_SEL_GPIO
#endif
#endif
#define USER_BUTTON_INTR_PRIORITY 3
#define INTERRUPT_FLAG_SET 1
#define INTERRUPT_FLAG_CLEAR 0
#define LED_DELAY_MS (1000u)
/* This code example assumes that the Device Configurator will automatically
* configure all GPIO pins of the device. To see how PDL drivers are used
* to manually configure GPIO pins, set the PDL_PIN_CONFIGURATION #define to 1,
* otherwise leave it set to 0.
*/
#define PDL_PIN_CONFIGURATION 0
/*******************************************************************************
* Global Variables
********************************************************************************/
uint32_t interruptFlag = INTERRUPT_FLAG_CLEAR;
#if PDL_PIN_CONFIGURATION
/* Structure used to initialize the User Button GPIO using PDL configuration. */
const cy_stc_gpio_pin_config_t CYBSP_USER_BTN_init_struct =
{
.outVal = 1, /* Pin output state */
.driveMode = CY_GPIO_DM_PULLUP, /* Drive mode */
.hsiom = CYBSP_USER_BTN_HSIOM, /* HSIOM selection */
.intEdge = CY_GPIO_INTR_RISING, /* Interrupt Edge type */
.vtrip = CY_GPIO_VTRIP_CMOS, /* Input buffer voltage trip type */
.slewRate = CY_GPIO_SLEW_FAST, /* Output buffer slew rate */
};
/* This structure is used to initialize a full GPIO Port using PDL
* configuration */
const cy_stc_gpio_prt_config_t PORT4_init_struct =
{
.dr = 0x00000000u, /* Initial output data for the IO pins in
the port */
.intrCfg = 0x00000000u, /* Port interrupt edge detection
configuration */
.pc = 0x00DB6DB6u, /* Port drive modes and input buffer enable
configuration */
.pc2 = 0x000000FFu, /* Port input buffer configuration */
.selActive = 0x00000000u, /* HSIOM selection for port pins */
};
#endif
/* User Button interrupt configuration structure */
const cy_stc_sysint_t user_button_intr_config = {
.intrSrc = CYBSP_USER_BTN_IRQ, /* Source of interrupt
signal */
.intrPriority = USER_BUTTON_INTR_PRIORITY /* Interrupt priority */
};
/*******************************************************************************
* Function Name: user_button_interrupt_handler
********************************************************************************
*
* Summary:
* This function is executed when User Button interrupt is triggered.
*
*******************************************************************************/
void user_button_interrupt_handler()
{
/* Clears the triggered pin interrupt */
Cy_GPIO_ClearInterrupt(CYBSP_USER_BTN_PORT, CYBSP_USER_BTN_NUM);
NVIC_ClearPendingIRQ(user_button_intr_config.intrSrc);
/* Set interrupt flag */
interruptFlag = INTERRUPT_FLAG_SET;
}
/*******************************************************************************
* Function Name: main
********************************************************************************
* Summary:
* The main function performs the following actions:
* 1. Initializes GPIO pins
* 2. Reads value from Reference pin when User button is pressed.
* 3. Writes value read from the Reference pin to User LED pin.
*
* Parameters:
* None
*
* Return:
* int
*
*******************************************************************************/
int main(void)
{
cy_rslt_t result;
/* Initialize the device and board peripherals */
result = cybsp_init() ;
if (result != CY_RSLT_SUCCESS)
{
CY_ASSERT(0);
}
/* Enable global interrupts */
__enable_irq();
/* Configuration tools automatically generate GPIO configuration code and
* execute it as part of the device boot process. The following GPIO
* configuration methods are typically only used with manual PDL GPIO
* configuration. They may also be used at run time to dynamically
* reconfigure GPIO pins independent of how the initial configuration
* was performed.
*/
/* Most IO pins only require their basic parameters to be set and can use
* default values for all other settings. This allows use of a simplified
* initialization function. Cy_GPIO_Pin_FastInit() only supports
* parameterized configuration of drive mode, output logic level, and HSIOM
* multiplexer setting. All other configuration settings are untouched. Very
* useful at run time to dynamically change a pin's configuration.
* For example, configure a pin to strong drive mode to write data, and then
* reconfigure as high impedance to read data.
*/
Cy_GPIO_Pin_FastInit(CYBSP_REFERENCE_GPIO_PORT, CYBSP_REFERENCE_GPIO_NUM, CY_GPIO_DM_HIGHZ, 0, CYBSP_REFERENCE_GPIO_HSIOM);
#if PDL_PIN_CONFIGURATION
/* The method to configure all attributes of a single pin is to use the
* Cy_GPIO_Pin_Init() function and configuration structure. While easy to
* use, it generates larger code than other methods.
*/
Cy_GPIO_Pin_Init(CYBSP_USER_BTN_PORT, CYBSP_USER_BTN_NUM, &CYBSP_USER_BTN_init_struct);
/* The most code efficient method to configure all attributes for a full
* port of pins is to use the Cy_GPIO_Port_Init() API function and
* configuration structure. It packs all the configuration data into direct
* register writes for the whole port. Its limitation is that it must
* configure all pins in a port and the user must calculate the combined
* register values for all pins or copy them from a configuration tool.
* This is the method used by automated configuration tools.
*/
Cy_GPIO_Port_Init(GPIO_PRT4, &PORT4_init_struct);
#else
/* Individual pin configuration settings can also be changed at run time
* using supplied driver API functions. An example of some of these
* functions are provided below.
*/
Cy_GPIO_SetHSIOM(CYBSP_USER_BTN_PORT, CYBSP_USER_BTN_NUM, CYBSP_USER_BTN_HSIOM);
Cy_GPIO_SetDrivemode(CYBSP_USER_BTN_PORT, CYBSP_USER_BTN_NUM, CY_GPIO_DM_PULLUP);
Cy_GPIO_SetVtrip(CYBSP_USER_BTN_PORT, CY_GPIO_VTRIP_CMOS);
Cy_GPIO_SetSlewRate(CYBSP_USER_BTN_PORT, CY_GPIO_SLEW_FAST);
/* Pin Interrupts */
/* Configure GPIO pin to generate interrupts */
Cy_GPIO_SetInterruptEdge(CYBSP_USER_BTN_PORT, CYBSP_USER_BTN_NUM, CY_GPIO_INTR_RISING);
#endif
/* Initialize and enable GPIO interrupt */
result = Cy_SysInt_Init(&user_button_intr_config, user_button_interrupt_handler);
if(result != CY_SYSINT_SUCCESS)
{
CY_ASSERT(0);
}
NVIC_ClearPendingIRQ(user_button_intr_config.intrSrc);
NVIC_EnableIRQ(user_button_intr_config.intrSrc);
/* Variable to store the value of the Reference pin */
uint32_t pinReadValue = 0;
/* Variable to store the value read from the port */
uint32_t portReadValue = 0;
/* Variable to store the port number of the Reference pin */
#if defined COMPONENT_PSOC4HVMS128K || COMPONENT_PSOC4HVMS64K
uint32_t portNumber = 0;
#else
uint32_t portNumber = 2;
#endif
/* Pin input read methods */
/* The following code performs the same read from a GPIO using the different
* read methods available. Please choose the most appropriate method for your
* specific use case. All Read() functions are thread and multi-core safe.
*/
/* Pin read using #defines provided by configuration tool pin name is not
* shown as the pin is not enabled in the configuration tool.
*/
#if defined COMPONENT_PSOC4HVMS128K || COMPONENT_PSOC4HVMS64K
/* Pin read with user defined custom #define pin name. This is the preferred
* method for direct PDL use without a configuration tool. #defines
* are typically placed in .h file but included here for example simplicity
* and clarity
*/
pinReadValue = Cy_GPIO_Read(CYBSP_REFERENCE_GPIO_PORT, CYBSP_REFERENCE_GPIO_NUM);
/* Pin read using default device pin name #defines */
pinReadValue = Cy_GPIO_Read(P0_2_PORT, P0_2_NUM);
/* Pin read using default port register name #defines and pin number */
pinReadValue = Cy_GPIO_Read(GPIO_PRT0, 2);
/* Pin read using port and pin numbers. Useful for algorithmically generated
* port and pin numbers. Cy_GPIO_PortToAddr() is a helper function
* that converts the port number into the required port register base
* address.
*/
pinReadValue = Cy_GPIO_Read(Cy_GPIO_PortToAddr(portNumber), 2);
/* Direct port IN register read with mask and shift of desired pin data */
pinReadValue = (GPIO_PRT0->PS >> P0_2_NUM) & CY_GPIO_PS_MASK;
#else
pinReadValue = Cy_GPIO_Read(CYBSP_REFERENCE_GPIO_PORT, CYBSP_REFERENCE_GPIO_NUM);
pinReadValue = Cy_GPIO_Read(P2_0_PORT, P2_0_NUM);
pinReadValue = Cy_GPIO_Read(GPIO_PRT2, 0);
pinReadValue = Cy_GPIO_Read(Cy_GPIO_PortToAddr(portNumber), 0);
pinReadValue = (GPIO_PRT2->PS >> P2_0_NUM) & CY_GPIO_PS_MASK;
#endif
/* This code example uses the pin read with user defined custom #define
* pin name from here on for simplicity.
*/
/* Similarly write operations can be performed using different pin write
* methods. For simplicity, this code example uses the pin write using
* #defines provided by configuration tool pin name. This is the preferred
* method for use with configuration tools. Cy_GPIO_Write() API is best used
* when the desired pin state is not already known and is determined at run
* time. The Write API uses atomic operations that directly affect only the
* selected pin without using read-modify-write operations. The Write API is
* therefore thread and multi-core safe.
*/
Cy_GPIO_Write(CYBSP_USER_LED_PORT, CYBSP_USER_LED_NUM, pinReadValue);
Cy_SysLib_Delay(LED_DELAY_MS);
/* Pin output methods to directly Set, Clear, and Invert pin output state */
/* These register writes are atomic operations that directly affect the
* selected pin without using read-modify-write operations. They are
* therefore thread and multi-core safe. These are the most efficient
* output methods when the desired pin state is already known at compile
* time. The same argument variations as demonstrated with the
* Cy_GPIO_Read() API can be used.
*/
Cy_GPIO_Clr(CYBSP_USER_LED_PORT, CYBSP_USER_LED_NUM);
Cy_SysLib_Delay(LED_DELAY_MS);
Cy_GPIO_Set(CYBSP_USER_LED_PORT, CYBSP_USER_LED_NUM);
Cy_SysLib_Delay(LED_DELAY_MS);
Cy_GPIO_Inv(CYBSP_USER_LED_PORT, CYBSP_USER_LED_NUM);
Cy_SysLib_Delay(LED_DELAY_MS);
for(;;)
{
/* Simultaneous Port Pin access */
/* Direct register access is used to interface with multiple pins in
* one port at the same time. May not be thread or multi-core safe due
* to possible read-modify-write operations. All pins in a Port under
* direct register control should only be accessed by a single CPU core.
*/
portReadValue = GPIO_PRT4->DR;
portReadValue++;
GPIO_PRT4->DR = portReadValue;
if(interruptFlag == INTERRUPT_FLAG_SET)
{
/* If interrupt occurs i.e., if button is pressed, read the input
* value from the Reference pin and write the value to the User LED.
*/
pinReadValue = Cy_GPIO_Read(CYBSP_REFERENCE_GPIO_PORT, CYBSP_REFERENCE_GPIO_NUM);
Cy_GPIO_Write(CYBSP_USER_LED_PORT, CYBSP_USER_LED_NUM, pinReadValue);
Cy_SysLib_Delay(LED_DELAY_MS);
/* Clear interrupt flag */
interruptFlag = INTERRUPT_FLAG_CLEAR;
}
else
{
Cy_SysLib_Delay(LED_DELAY_MS);
}
}
}
/* [] END OF FILE */