forked from Gitamrit/Sentimental-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyour_script.py
163 lines (120 loc) · 4.95 KB
/
your_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import pandas as pd
def sentiment_analysis_model(name):
import selenium
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.chrome.options import Options
from time import sleep
import getpass
my_user = "enter your user id"
my_pass = "enter your password"
# Set up Chrome options for headless mode
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--disable-gpu")
chrome_options.add_argument("--window-size=1920x1080")
# Create the Chrome driver with options
driver = webdriver.Chrome(options=chrome_options)
driver.implicitly_wait(10)
# # Simply create the Chrome driver without specifying the path
# driver = webdriver.Chrome()
driver.implicitly_wait(10)
# Now you can use the driver for your web automation tasks
driver.get("https://x.com/i/flow/login")
user_id = driver.find_element(By.XPATH,"//input[@type='text']")
user_id.send_keys(my_user)
user_id.send_keys(Keys.ENTER)
# driver.implicitly_wait(10)
# my_mob = "enter your mobile number"
# mob_no = driver.find_element(By.XPATH,"//input[@type='text']")
# mob_no.send_keys(my_mob)
# mob_no.send_keys(Keys.ENTER)
# driver.implicitly_wait(10)
try:
mob_no = driver.find_element(By.XPATH, "//input[@type='text']")
my_mob = "enter your mobile number" # Replace with your phone number if needed
mob_no.send_keys(my_mob)
mob_no.send_keys(Keys.ENTER)
except:
print("No phone number step required")
password = driver.find_element(By.XPATH,"//input[@type='password']")
password.send_keys(my_pass)
password.send_keys(Keys.ENTER)
# name = input('What is your name?\n')
search_item = name
# search_item = "Narendra Modi"
search_box = driver.find_element(By.XPATH,"//input[@data-testid='SearchBox_Search_Input']")
search_box.send_keys(search_item)
search_box.send_keys(Keys.ENTER)
print("Checkpoint: Section 1 completed")
all_tweets = set()
tweets = driver.find_elements(By.XPATH,"//div[@data-testid='tweetText']")
while True:
for tweet in tweets:
all_tweets.add(tweet.text)
driver.execute_script('window.scrollTo(0,document.body.scrollHeight);')
sleep(3)
tweets = driver.find_elements(By.XPATH,"//div[@data-testid='tweetText']")
if len(all_tweets)>100:
break
print("Checkpoint: Section 2 completed")
all_tweets = list(all_tweets)
all_tweets[0]
# Cleaning the tweets
import pandas as pd
pd.options.display.max_colwidth = 1000
import re
import nltk
nltk.download('punkt')
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
stp_words = stopwords.words('english')
# stp_words
# stop_words_hi = stopwords.words('hindi')
# stop_words_hi
df = pd.DataFrame(all_tweets,columns=['tweets'])
# df.head()
from deep_translator import GoogleTranslator
import pandas as pd
# Assuming you have a DataFrame 'df' with a column 'tweets'
# Create a new column 'english_tweets' to store the translations
df['english_tweets'] = df['tweets'].apply(lambda sentence: GoogleTranslator(source='auto', target='en').translate(sentence))
print("Checkpoint: Section 3 completed")
# Now 'df' contains both the original tweets and their English translations
# print(df[['tweets', 'english_tweets']])
one_tweet = df['tweets']
one_tweet
# !pip install textblob
from textblob import TextBlob
from wordcloud import WordCloud
def TweetCleaning(tweet):
clean_tweet = re.sub('[^a-zA-Z0-9]',' ',tweet)
clean_tweet = ' '.join(word for word in clean_tweet.split() if word not in stp_words)
return clean_tweet
def calPolarity(tweet):
return TextBlob(tweet).sentiment.polarity
def calSubjectivity(tweet):
return TextBlob(tweet).sentiment.subjectivity
def segmentation(tweet):
if tweet >0:
return "positive"
if tweet==0:
return "neutral"
else:
return "negative"
# clean_tweet
# clean_tweet.split()
# type(clean_tweet)
df['Cleaned_tweets'] = df['english_tweets'].apply(TweetCleaning)
# df.head(20)
print("Checkpoint: Section 4 completed")
# df.shape
df['tPolarity'] = df['Cleaned_tweets'].apply(calPolarity)
df['tSubjectivity'] = df['Cleaned_tweets'].apply(calSubjectivity)
df['segmentation'] = df['tPolarity'].apply(segmentation)
# df.head()
sentiment_counts = df['segmentation'].value_counts().reset_index()
sentiment_counts.columns = ['segmentation', 'count']
return sentiment_counts