-
Notifications
You must be signed in to change notification settings - Fork 9
/
align_crop_session_two.py
209 lines (170 loc) · 8.44 KB
/
align_crop_session_two.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# import the necessary packages
from speakingfacespy.imtools import face_region_extractor
from speakingfacespy.imtools import make_dir
from imutils import paths
import face_recognition
import numpy as np
import cv2
import argparse
import os
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True,
help="path to the dataset")
ap.add_argument("-i", "--sub_info", nargs='+', type=int,
help="subID(1,...,142) trialID (1,2) posID(1,...,9)")
ap.add_argument("-y", "--dy", nargs='+', type=int,
help="a list of shifts in y axis for each position")
ap.add_argument("-x", "--dx", nargs='+', type=int,
help="a list of shifts in x axis for each position")
ap.add_argument("-m", "--model", type=str, default="dnn",
help="a model for face detection: hog/dnn/cnn/none")
ap.add_argument("-c", "--confidence", type=float, default=0.8,
help="a minimum probability for dnn to filter out weak face detections")
ap.add_argument("-u", "--upper_bound", nargs='+', type=int,
help="a list of upper bounds for landmarks to crop the lip for each position")
ap.add_argument("-r", "--resize", nargs='+', type=int, default = (128,64),
help="resize the ROI (width, height)")
ap.add_argument("-s", "--show", type=int, default=0,
help="visualize (1) or not (0) a preliminary result of alignment")
args = vars(ap.parse_args())
# initialize the subject, trial and
# position IDs
sub_id = args["sub_info"][0]
trial_id = args["sub_info"][1]
pos_id = args["sub_info"][2]
# initialize a list of the upper bounds for
# cropping the lip ROI
upper_bound = args["upper_bound"][pos_id - 1]
# initialize the bbox coordinates of the RoI
# for manual extraction
initBB = None
# load the serialiazed dnn face detector from disk
# in case if it was selected
if args["model"] == "dnn":
print("[INFO] loading dnn face detector...")
face_net = cv2.dnn.readNetFromCaffe("models/deploy.prototxt.txt",
"models/res10_300x300_ssd_iter_140000.caffemodel")
# initialize a path to our dataset
path_to_dataset = args["dataset"]
# construct a path to our visual images
rgb_image_path = os.path.join(path_to_dataset, "sub_{}/trial_{}/rgb_image_cmd".format(sub_id, trial_id))
# construct a path to our thermal images
thr_image_path = os.path.join(path_to_dataset, "sub_{}/trial_{}/thr_image_cmd".format(sub_id, trial_id))
# create a directory to save the aligned visual images
rgb_image_aligned_path = os.path.join(path_to_dataset, "sub_{}/trial_{}/rgb_image_cmd_aligned".format(sub_id, trial_id))
make_dir(rgb_image_aligned_path)
# create directories for extracted lip region
lip_rgb_path = os.path.join(path_to_dataset, "sub_{}/trial_{}/rgb_roi_cmd".format(sub_id, trial_id))
lip_thr_path = os.path.join(path_to_dataset, "sub_{}/trial_{}/thr_roi_cmd".format(sub_id, trial_id))
make_dir(lip_rgb_path)
make_dir(lip_thr_path)
# initialize lists of shifts
dy = args["dy"][pos_id - 1]
dx = args["dx"][pos_id - 1]
# construct arrays of matched features
# for the given position
ptsA = np.array([[399 + dx, 345 + dy], [423 + dx, 293 + dy], [293 + dx, 316 + dy], [269 + dx, 368 + dy]])
ptsB = np.array([[249, 237], [267, 196], [169, 214], [151, 254]])
# estimate a homography matrix
# for the given position
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, 2.0)
# grab the path to the visual images
rgb_image_filepaths = list(paths.list_images(rgb_image_path))
# loop over the visible images
for rgb_image_filepath in rgb_image_filepaths:
# extract the current image info
sub, trial, session, pos, cmd, frame = rgb_image_filepath.split(os.path.sep)[-1].split("_")[-7:-1]
# process only the files for the given position if "show" mode is enabled.
if int(pos) != pos_id and args["show"]:
continue
print("[INFO] processing image {}".format(rgb_image_filepath.split(os.path.sep)[-1]))
# construct a filenames of the corresponding thermal images
thr_file = "{}_{}_2_{}_{}_{}_1.png".format(sub, trial, pos, cmd, frame)
thr_image_filepath = os.path.join(thr_image_path, thr_file)
# load rgb and corresponding thermal image
rgb_image = cv2.imread(rgb_image_filepath)
thr_image = cv2.imread(thr_image_filepath)
# grab height and width of the thermal image
(h_thr, w_thr) = thr_image.shape[:2]
# align rgb image with the thermal one
rgb_image_aligned = cv2.warpPerspective(rgb_image, H, (w_thr, h_thr),
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
# make a copy of the aligned rgb image
rgb_image_aligned_copy = rgb_image_aligned.copy()
# if we want automatically extract RoI
if args["model"] != "none":
# detect faces in the rgb image and return
# corresponding bounding boxes
if args["model"] != "dnn":
# apply dlib's face detector
rgb_boxes = face_recognition.face_locations(rgb_image_aligned, model=args["model"])
else:
# apply OpenCV's face detector
rgb_boxes = face_region_extractor(face_net, rgb_image_aligned, args["confidence"])
# if at least one face is detected
if len(rgb_boxes):
# assume that only one person was detected and extract (x,y)
# coordinates of the bbox
rgb_box = rgb_boxes[0]
(face_startY, face_endX, face_endY, face_startX) = rgb_box
# check if the was detected properly
if face_startX < 0 or face_startY < 0:
print("[INFO] INAPPROPRIATE COORDINATES FOR THE BOUNDING BOX!!!")
break
# extract facial landmarks
rgb_landmark = face_recognition.face_landmarks(rgb_image_aligned, rgb_boxes)[0]
# extract coordinates for the chin ROI
chin_roi = rgb_landmark['chin']
(lip_startX, lip_startY, lip_endX, lip_endY) = (chin_roi[2][0], chin_roi[upper_bound][1], chin_roi[14][0],chin_roi[6][1])
# slightly change coordinates of the lip ROI
# for some positions
if pos > 6:
lip_startX = lip_startX - 20
lip_endX = lip_endX - 20
elif pos > 3:
lip_startX = lip_startX + 20
lip_endX = lip_endX + 20
# draw landmarks if visualization is enabled
if args["show"]:
# draw landmarks
for (x_l, y_l) in chin_roi:
cv2.circle(rgb_image_aligned_copy, (x_l, y_l), 2, (0, 255, 0), -1)
cv2.circle(thr_image, (x_l, y_l), 2, (0, 255, 0), -1)
else:
# select the RoI manually
if initBB is None:
initBB = cv2.selectROI("Frames", rgb_image_aligned, fromCenter=False,
showCrosshair=True)
(x, y, w, h) = initBB
(lip_startX, lip_startY, lip_endX, lip_endY) = (x, y, x + w, y + h)
# crop the detected faces
rgb_lip = rgb_image_aligned[lip_startY:lip_endY, lip_startX:lip_endX]
thr_lip = thr_image[lip_startY:lip_endY, lip_startX:lip_endX]
# resize the lips
rgb_lip = cv2.resize(rgb_lip, args["resize"], interpolation = cv2.INTER_AREA)
thr_lip = cv2.resize(thr_lip, args["resize"], interpolation = cv2.INTER_AREA)
# if visualization is enabled
if args["show"]:
# draw the ROI
cv2.rectangle(rgb_image_aligned_copy, (lip_startX, lip_startY), (lip_endX, lip_endY), (0, 0, 255), 2)
cv2.rectangle(thr_image, (lip_startX, lip_startY), (lip_endX, lip_endY), (0, 0, 255), 2)
# show the frames
cv2.imshow("Frames", np.hstack([rgb_image_aligned_copy, thr_image]))
cv2.imshow("Lips", np.hstack([rgb_lip, thr_lip]))
key = cv2.waitKey(0) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
else:
# construct filenames to save the image and the ROIs
rgb_aligned_filename = "{}_{}_{}_{}_{}_{}_3.png".format(sub, trial, session, pos, cmd, frame)
rgb_lip_filename = "{}_{}_{}_{}_{}_{}_4.png".format(sub, trial, session, pos, cmd, frame)
thr_lip_filename = "{}_{}_{}_{}_{}_{}_5.png".format(sub, trial, session, pos, cmd, frame)
# construct paths to save images
rgb_aligned_path = os.path.join(rgb_image_aligned_path, rgb_aligned_filename)
rgb_lip_path = os.path.join(lip_rgb_path, rgb_lip_filename)
thr_lip_path = os.path.join(lip_thr_path, thr_lip_filename)
# save the images
cv2.imwrite(rgb_aligned_path, rgb_image_aligned)
cv2.imwrite(rgb_lip_path, rgb_lip)
cv2.imwrite(thr_lip_path, thr_lip)