-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathht_experiments.py
181 lines (152 loc) · 8.56 KB
/
ht_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import auto_highlighter as ah
import ann_utils as utils
import numpy as np
import sys
from os.path import isfile, join
from os import listdir
# folders of paper groups
folder_200_papers = './summaries/'
folder_18_papers = './20-test-papers/summaries/'
folder_10_manual_checked = './10-manual-checked/summaries/'
folder_42_extra_papers = './local_exp/42-extra-papers/summaries/'
folder_42_20_papers = './local_exp/42+20/summaries/'
folder_extra_checked = './local_exp/extra_manual_curated/summaries/'
folder_combined_checked = './local_exp/manual_curated_combined/summaries/'
# manual checked result file
manual_file = './results/manual_annotations.json'
extra_manual_file = './results/manual_annotations_extra_corrected.json'
combined_manual_file = './results/manual_annotations_combined.json'
def dump_file_results(files, out_file, threshold=0.4):
ht = ah.HighLighter.get_instance()
ctn = []
s = 'sid\thighlighted\tpredicted\ttype\toverall score\tsub-pred score/confidence\tCD Score\tNE Score\ttext\n'
for f in files:
rets = ah.score_paper_threshold(f, ctn, '', ht, threshold)
if rets is None:
continue
s += '\n\n{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n'.format(
'**','**','**','**','**','**','**','**', f)
s += '\n'.join(rets)
print '%s done' % f
utils.save_text_file(s, out_file)
def output_random_picked_files():
test_files = [
'./20-test-papers/summaries/10561930_annotated_ann_scores.json',
'./20-test-papers/summaries/10791835_annotated_ann_scores.json',
'./20-test-papers/summaries/11277563_annotated_ann_scores.json',
'./20-test-papers/summaries/12124484_annotated_ann_scores.json',
'./20-test-papers/summaries/12673603_annotated_ann_scores.json',
'./20-test-papers/summaries/15178945_annotated_ann_scores.json',
'./20-test-papers/summaries/15377698_annotated_ann_scores.json',
'./20-test-papers/summaries/15645532_annotated_ann_scores.json',
'./20-test-papers/summaries/15661114_annotated_ann_scores.json',
'./20-test-papers/summaries/15942197_annotated_ann_scores.json',
]
training_files = [
'./summaries/Bartova et al., (2010) - Correlation between substantia nigra features detected by sonography and PD_annotated_ann_scores.json',
'./summaries/Bilello et al., (2015) - Correlating cognitive decline with white matter lesions and atrophy in AD_annotated_ann_scores.json',
'./summaries/Forster et al., (2011) - Effects of a 6 month cognitive intervention program on brain metabolism in aMCI and mild AD_annotated_ann_scores.json',
'./summaries/Giannakopoulous et al., (2000) - Neural substrates of spatial and temporal disorientation in AD_annotated_ann_scores.json',
'./summaries/Sunwoo et al., (2013) - Thalamic volume and related visual recognition are associated with FOG in PD_annotated_ann_scores.json',
'./summaries/Ibarretxe-Bilbao et al., (2009) - Differential progression of brain atrophy in PD with and without VH_annotated_ann_scores.json',
'./summaries/Iranzo et al., (2002) - Sleep symptoms and polysomnographic architecture in advanced PD after chronic bilateral STN stimulation_annotated_ann_scores.json',
'./summaries/Lawrence et al., (2003) - Multiple neuronal networks mediate sustained attention_annotated_ann_scores.json',
'./summaries/Nee et al., (2014) - Prefrontal cortex organisation. Dissociating effects of temporal abstraction, relational abstraction and integration with fMRI_annotated_ann_scores.json',
'./summaries/Tan et al., (2015) - Pain in PD_annotated_ann_scores.json',
]
dump_file_results(test_files, './results/sample_test_files_full.tsv')
def pp_score_exp(container, out_file, hter, threshold, manual_ann):
should = 0
correct = 0
predicted = 0
total = 0
print 'precision\trecall\tf measure\t#highlighted\t#predicted\tpaper'
precision_sum = 0
recall_sum = 0
num_total = 0
for p in container:
if p['hts'] == 0:
continue
should += p['hts']
correct += p['correct']
predicted += p['predicted']
total += p['max_sid'] if 'max_sid' in p else 0
p_precision = 1.0 * p['correct'] / p['predicted'] if p['predicted'] > 0 else 0
p_recall = 1.0 * p['correct'] / p['hts']
precision_sum += p_precision
recall_sum += p_recall
num_total += 1
print '{:.2f}\t{:.2f}\t{:.2f}\t{}\t{}\t{}'.format(
p_precision,
p_recall,
2 * p_precision * p_recall / (p_recall + p_precision) if (p_recall + p_precision) > 0 else 0,
p['hts'], p['predicted'], p['paper'])
avg_precision = precision_sum / num_total
avg_recall = recall_sum / num_total
print 'macro-average P/R/F1: %s %s %s; #total sentences: %s; #predicted: %s' % \
(avg_precision, avg_recall, (2 * avg_precision * avg_recall/(avg_recall + avg_precision)), total, predicted)
if predicted == 0:
print '{}\t-\t-\t-'.format(threshold)
else:
precision = 1.0 * correct / predicted
recall = 1.0 * correct / should
print '\nmicro-average result'
print 'threshold\tprecision\trecall\t#fallout\t#f measure'
print '{}\t{}\t{}\t{}\t{}'.format(threshold, precision, recall,
'-' if total == 0 else (1.0 * predicted - correct)/(total - correct),
2 * precision * recall / (precision + recall))
# utils.save_json_array(container, out_file)
def score_exp(score_files_path, out_file, threshold, manual_ann=None):
ret_container = []
hter = ah.HighLighter.get_instance()
utils.multi_thread_process_files(score_files_path, '', 1, ah.score_paper_threshold,
args=[ret_container, out_file, hter, threshold, manual_ann],
file_filter_func=lambda fn: fn.endswith('_scores.json'),
callback_func=pp_score_exp)
def get_manual_checked_result():
return utils.load_json_data(manual_file)
def exp_given_threshold(corpus_path, threshold, manual_ann=None):
score_exp(corpus_path, '', threshold, manual_ann)
def exp_iterating_threshold(corpus_path, manual_ann=None):
print 'precision\trecall\tfall out\t#f measure'
for i in np.arange(0.00, 1, 0.1000):
score_exp(corpus_path, '', i, manual_ann)
# highlighting post-processing - saving results
def pp_highlight(container, out_file, hter, threshold, manual_ann):
utils.save_json_array(container, out_file)
# do highlights
def do_highlighting(score_path):
threshold = .4
ret_container = []
hter = ah.HighLighter.get_instance()
utils.multi_thread_process_files(score_path, '', 3, ah.score_paper_threshold,
args=[ret_container, score_path + '/highlight-results.json', hter, threshold, None],
file_filter_func=lambda fn: fn.endswith('_scores.json'),
callback_func=pp_highlight)
# highlight papers in a given folder
def highlight_papers(ann_path, score_path):
ah.summarise_all_papers(ann_path, score_path, callback=do_highlighting)
def output_pagewise_results():
score_file_path = './local_exp/42-extra-papers/summaries/'
score_files = [join(score_file_path, f) for f in listdir(score_file_path) if isfile(join(score_file_path, f))
and f.endswith('_annotated_ann_scores.json')]
print 'dump detail of %s papers...' % len(score_files)
dump_file_results(score_files, join(score_file_path, '42-extra-papers-paperwise-detail.tsv'))
print 'all done'
if __name__ == "__main__":
# output_pagewise_results()
if len(sys.argv) == 4 and sys.argv[1] == 'ht':
highlight_papers(sys.argv[2], sys.argv[3])
else:
# exp_iterating_threshold(folder_18_papers)
# exp_iterating_threshold(folder_10_manual_checked, get_manual_checked_result())
# exp_iterating_threshold(folder_200_papers)
# exp_given_threshold(folder_200_papers, .4)
# exp_given_threshold(folder_18_papers, .4)
# exp_given_threshold(folder_10_manual_checked, .4, get_manual_checked_result())
# exp_iterating_threshold(folder_18_papers)
# exp_given_threshold(folder_42_20_papers, .4)
# exp_iterating_threshold(folder_extra_checked, utils.load_json_data(extra_manual_file))
exp_given_threshold(folder_42_20_papers, .4)
# exp_given_threshold(folder_42_extra_papers, .4)
# exp_given_threshold(folder_combined_checked, .4, utils.load_json_data(combined_manual_file))