diff --git a/theories/Pointed/Loops.v b/theories/Pointed/Loops.v index 7feee4dfb3..d28484e6c8 100644 --- a/theories/Pointed/Loops.v +++ b/theories/Pointed/Loops.v @@ -163,11 +163,11 @@ Proof. Defined. Definition isconnected_iterated_fmap_loops `{Univalence} - (k : nat) (A B : pType) (f : A ->* B) - : forall n : trunc_index, IsConnMap (trunc_index_inc' n k) f - -> IsConnMap n (fmap (iterated_loops k) f). + (n : trunc_index) (k : nat) (A B : pType) (f : A ->* B) + (C : IsConnMap (trunc_index_inc' n k) f) + : IsConnMap n (fmap (iterated_loops k) f). Proof. - induction k; intros n C. + induction k in n, C |- *. - exact C. - apply isconnected_fmap_loops. apply IHk. @@ -351,18 +351,16 @@ Proof. Defined. (* Loops neutralise sigmas when truncated *) -Lemma loops_psigma_trunc (n : nat) : forall (Aa : pType) - (Pp : pFam Aa) (istrunc_Pp : IsTrunc_pFam (trunc_index_inc minus_two n) Pp), - iterated_loops n (psigma Pp) - <~>* iterated_loops n Aa. +Lemma loops_psigma_trunc (n : nat) (Aa : pType) + (Pp : pFam Aa) (istrunc_Pp : IsTrunc_pFam (trunc_index_inc minus_two n) Pp) + : iterated_loops n (psigma Pp) <~>* iterated_loops n Aa. Proof. - induction n. - { intros A P p. - snrapply Build_pEquiv'. - 1: refine (@equiv_sigma_contr _ _ p). + induction n in Aa, Pp, istrunc_Pp |- *. + { snrapply Build_pEquiv'. + 1: refine (@equiv_sigma_contr _ _ istrunc_Pp). reflexivity. } - intros A P p. - refine (pequiv_inverse (unfold_iterated_loops' _ _) o*E _ o*E unfold_iterated_loops' _ _). + refine (pequiv_inverse (unfold_iterated_loops' _ _) o*E _ + o*E unfold_iterated_loops' _ _). refine (IHn _ _ _ o*E _). rapply (emap (iterated_loops _)). apply loops_psigma_commute. @@ -404,10 +402,10 @@ Proof. Defined. (* 7.2.9, with [n] here meaning the same as [n-1] there. Note that [n.-1] in the statement is short for [trunc_index_pred (nat_to_trunc_index n)] which is definitionally equal to [(trunc_index_inc minus_two n).+1]. *) -Theorem equiv_istrunc_contr_iterated_loops `{Funext} (n : nat) - : forall A, IsTrunc n.-1 A <~> forall a : A, Contr (iterated_loops n [A, a]). +Theorem equiv_istrunc_contr_iterated_loops `{Funext} (n : nat) (A : Type) + : IsTrunc n.-1 A <~> forall a : A, Contr (iterated_loops n [A, a]). Proof. - induction n; intro A. + induction n in A |- *. { cbn. exact equiv_hprop_inhabited_contr. } refine (_ oE equiv_istrunc_istrunc_loops n.-2 _). srapply equiv_functor_forall_id.