-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
40 lines (28 loc) · 1.36 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from PIL import Image
import os
from torch.utils.data import Dataset
import numpy as np
class PixelSceneryDataset(Dataset):
def __init__(self, root_pixel, root_scenery, transform=None):
self.root_pixel = root_pixel
self.root_scenery = root_scenery
self.transform = transform
self.pixel_images = os.listdir(root_pixel)
self.scenery_images = os.listdir(root_scenery)
self.length_dataset = max(len(self.pixel_images), len(self.scenery_images)) # in case of datasets not having the same length
self.pixel_len = len(self.pixel_images)
self.scenery_len = len(self.scenery_images)
def __len__(self):
return self.length_dataset
def __getitem__(self, index):
pixel_img = self.pixel_images[index % self.pixel_len]
scenery_img = self.scenery_images[index % self.scenery_len]
pixel_path = os.path.join(self.root_pixel, pixel_img)
scenery_path = os.path.join(self.root_scenery, scenery_img)
pixel_img = np.array(Image.open(pixel_path).convert("RGB"))
scenery_img = np.array(Image.open(scenery_path).convert("RGB"))
if self.transform:
augmentations = self.transform(image=pixel_img, image0=scenery_img)
pixel_img = augmentations["image"]
scenery_img = augmentations["image0"]
return pixel_img, scenery_img