-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcgan_conv.py
127 lines (100 loc) · 3.89 KB
/
cgan_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import sys, os
sys.path.append('utils')
from nets import *
from datas import *
def sample_z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
# for test
def sample_y(m, n, ind):
y = np.zeros([m,n])
for i in range(m):
y[i,int(i/4)] = 1
return y
def concat(z,y):
return tf.concat([z,y],1)
def conv_concat(x,y):
bz = tf.shape(x)[0]
print ('bz', bz)
y = tf.reshape(y, [bz, 1, 1, 10])
return tf.concat([x, y*tf.ones([bz, 28, 28, 10])], 3) # bzx28x28x11
class CGAN():
def __init__(self, generator, discriminator, data):
self.generator = generator
self.discriminator = discriminator
self.data = data
# data
self.z_dim = self.data.z_dim
self.y_dim = self.data.y_dim # condition
self.size = self.data.size
self.channel = self.data.channel
self.X = tf.placeholder(tf.float32, shape=[None, self.size, self.size, self.channel])
self.z = tf.placeholder(tf.float32, shape=[None, self.z_dim])
self.y = tf.placeholder(tf.float32, shape=[None, self.y_dim])
# nets
self.G_sample = self.generator(concat(self.z, self.y))
self.D_real, _ = self.discriminator(conv_concat(self.X, self.y))
self.D_fake, _ = self.discriminator(conv_concat(self.G_sample, self.y), reuse = True)
# loss
self.D_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_real, labels=tf.ones_like(self.D_real))) + tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_fake, labels=tf.zeros_like(self.D_fake)))
self.G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_fake, labels=tf.ones_like(self.D_fake)))
# solver
self.D_solver = tf.train.AdamOptimizer().minimize(self.D_loss, var_list=self.discriminator.vars)
self.G_solver = tf.train.AdamOptimizer().minimize(self.G_loss, var_list=self.generator.vars)
self.saver = tf.train.Saver()
gpu_options = tf.GPUOptions(allow_growth=True)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
def train(self, sample_dir, ckpt_dir='ckpt', training_epoches = 1000000, batch_size = 64):
fig_count = 0
self.sess.run(tf.global_variables_initializer())
for epoch in range(training_epoches):
# update D
X_b,y_b = self.data(batch_size)
self.sess.run(
self.D_solver,
feed_dict={self.X: X_b, self.y: y_b, self.z: sample_z(batch_size, self.z_dim)}
)
# update G
k = 1
for _ in range(k):
self.sess.run(
self.G_solver,
feed_dict={self.y:y_b, self.z: sample_z(batch_size, self.z_dim)}
)
# save img, model. print loss
if epoch % 100 == 0 or epoch < 100:
D_loss_curr = self.sess.run(
self.D_loss,
feed_dict={self.X: X_b, self.y: y_b, self.z: sample_z(batch_size, self.z_dim)})
G_loss_curr = self.sess.run(
self.G_loss,
feed_dict={self.y: y_b, self.z: sample_z(batch_size, self.z_dim)})
print('Iter: {}; D loss: {:.4}; G_loss: {:.4}'.format(epoch, D_loss_curr, G_loss_curr))
if epoch % 1000 == 0:
y_s = sample_y(16, self.y_dim, fig_count%10)
samples = self.sess.run(self.G_sample, feed_dict={self.y: y_s, self.z: sample_z(16, self.z_dim)})
fig = self.data.data2fig(samples)
plt.savefig('{}/{}_{}.png'.format(sample_dir, str(fig_count).zfill(3), str(fig_count%10)), bbox_inches='tight')
fig_count += 1
plt.close(fig)
#if epoch % 2000 == 0:
# self.saver.save(self.sess, os.path.join(ckpt_dir, "cgan_conv.ckpt"))
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# save generated images
sample_dir = 'Samples/mnist_cgan_conv'
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
# param
generator = G_conv_mnist()
discriminator = D_conv_mnist()
data = mnist()
# run
cgan = CGAN(generator, discriminator, data)
cgan.train(sample_dir)