-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path09.1-ROSMAP_serum_p180_analysis.R
259 lines (208 loc) · 8.25 KB
/
09.1-ROSMAP_serum_p180_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
library(plyr)
library(dplyr)
library(tidyr)
library(stringr)
# p180 for serum
ROSMAP_p180_serum_FIA <- read.csv("data/ROSMAP_p180_serum_FIA.csv", stringsAsFactors = FALSE) %>%
filter(projid != "4688 study pool")
ROSMAP_p180_serum_UPLC <- read.csv("data/ROSMAP_p180_serum_UPLC.csv", stringsAsFactors = FALSE) %>%
filter(projid != "4688 study pool")
# Phenotypic data for ROSMAP
ROSMAP_pheno <- read.csv("data/ROSMAP_pheno.csv")
## Clean up phenotype data
# Get only relevant columns
ROSMAP_pheno_small <-
ROSMAP_pheno %>%
select(
"projid",
"study",
"cogdx", # 1 = control, 2/3 = MCI, 4/5 = AD, 6 = Other
"msex", # 1 = Male, 0 = Female
"age_death",
"apoe_genotype",
"pmi", # in hours
"braaksc", # Braak stage (Tau)
"age_at_visit_max"
)
# Recode sex
ROSMAP_pheno_small$msex <-
ROSMAP_pheno_small$msex %>%
recode(
"1" = "Male",
"0" = "Female"
) %>%
as.factor()
# Recode diagnosis
ROSMAP_pheno_small$cogdx <-
ROSMAP_pheno_small$cogdx %>%
recode(
"1" = "CO",
"2" = "MCI",
"3" = "MCI",
"4" = "AD",
"5" = "AD",
"6" = "Other"
) %>%
as.factor()
# Recode age and set as numeric
ROSMAP_pheno_small$age_death <-
ROSMAP_pheno_small$age_death %>%
as.character() %>%
recode(
"90+" = "90"
) %>%
as.numeric()
ROSMAP_pheno_small$age_at_visit_max <-
ROSMAP_pheno_small$age_at_visit_max %>%
as.character() %>%
recode(
"90+" = "90"
) %>%
as.numeric()
## Clean up metabolomic data
# Remove columns if they contain no values
not_all_na <- function(x) any(!is.na(x))
# Serum
ROSMAP_p180_serum_FIA_small <- ROSMAP_p180_serum_FIA[,c(2,14:154)] %>%
mutate(projid = as.integer(projid))
ROSMAP_p180_serum_UPLC_small <- ROSMAP_p180_serum_UPLC[,c(2,14:54)] %>%
select_if(not_all_na) %>%
mutate(projid = as.integer(projid))
# Average replicates
replicates <- unique(ROSMAP_p180_serum_FIA$projid[duplicated(ROSMAP_p180_serum_FIA$projid)])
replicates_only_serum_FIA <- ROSMAP_p180_serum_FIA_small[ROSMAP_p180_serum_FIA_small$projid %in% replicates,]
replicates_only_serum_UPLC <- ROSMAP_p180_serum_UPLC_small[ROSMAP_p180_serum_UPLC_small$projid %in% replicates,]
# Average UPLC
avgs <- c()
uplc_avgs <- matrix(nrow = 0, ncol = 38)
colnames(uplc_avgs) <- colnames(replicates_only_serum_UPLC)
for (rep_id in replicates) {
for (i in 2:ncol(replicates_only_serum_UPLC)) {
avgs[1] <- rep_id
pair <- replicates_only_serum_UPLC[replicates_only_serum_UPLC$projid == rep_id, i]
if (sum(!is.na(pair)) > 1) {
avgs[i] <- mean(pair, na.rm = TRUE)
}
else if (any(!is.na(pair))) {
distrib <- quantile(ROSMAP_p180_serum_FIA_small[,i], c(0.1), na.rm = TRUE)
if (pair[!is.na(pair)] < distrib) avgs[i] <- pair[!is.na(pair)]
else avgs[i] <- NA
}
else avgs[i] <- NA
}
uplc_avgs <- rbind(uplc_avgs, avgs)
}
serum_uplc_noreps <-
ROSMAP_p180_serum_UPLC_small[!ROSMAP_p180_serum_UPLC_small$projid %in% replicates,]
ROSMAP_p180_serum_UPLC_small_avgreps <- rbind(serum_uplc_noreps, uplc_avgs)
# Average FIA
avgs <- c()
fia_avgs <- matrix(nrow = 0, ncol = 142)
colnames(fia_avgs) <- colnames(replicates_only_serum_FIA)
for (rep_id in replicates) {
for (i in 2:ncol(replicates_only_serum_FIA)) {
avgs[1] <- rep_id
pair <- replicates_only_serum_FIA[replicates_only_serum_FIA$projid == rep_id, i]
if (sum(!is.na(pair)) > 1) {
avgs[i] <- mean(pair, na.rm = TRUE)
}
else if (any(!is.na(pair))) {
distrib <- quantile(ROSMAP_p180_serum_FIA_small[,i], c(0.1), na.rm = TRUE)
if (pair[!is.na(pair)] < distrib) avgs[i] <- pair[!is.na(pair)]
else avgs[i] <- NA
}
else avgs[i] <- NA
}
fia_avgs <- rbind(fia_avgs, avgs)
}
serum_fia_noreps <-
ROSMAP_p180_serum_FIA_small[!ROSMAP_p180_serum_FIA_small$projid %in% replicates,]
ROSMAP_p180_serum_FIA_small_avgreps <- rbind(serum_fia_noreps, fia_avgs)
# Create data frames for models
model_data_all_serum <- # 178 metabs
ROSMAP_pheno_small %>%
right_join(ROSMAP_p180_serum_FIA_small_avgreps) %>%
right_join(ROSMAP_p180_serum_UPLC_small_avgreps)
## Missingness, IQR, transform - serum
# Get how many readings are missing for each metabolite
missingvals_all_serum <-
apply(
model_data_all_serum[,10:ncol(model_data_all_serum)],
MARGIN = 2,
FUN = function(x) sum(is.na(x)))
# Convert to percent
pct_missing_all_serum <- missingvals_all_serum/nrow(model_data_all_serum)
# Data frame of all metabolites with their % missing
pct_missing_all_serum_df <-
data.frame(
metabs = colnames(model_data_all_serum)[10:ncol(model_data_all_serum)],
pct_missing = pct_missing_all_serum
)
# Get only metabolites missing >=20% values
missing20_all_serum <- pct_missing_all_serum_df[which(pct_missing_all_serum_df$pct_missing >= 0.20),]
nrow(missing20_all_serum) # 19 analytes
# 159 metabolites missing less than 20%
model_data_all_serum_clean <- model_data_all_serum[,!colnames(model_data_all_serum) %in% missing20_all_serum$metabs]
## Log10 transform, IQR adjust, and adjust mean
model_data_all_serum_clean <-
model_data_all_serum_clean %>%
mutate_at(10:ncol(model_data_all_serum_clean), log10)
model_data_all_serum_transformed <- model_data_all_serum_clean
model_data_all_serum_transformed_mean <- vector()
serum_IQRs <- apply(model_data_all_serum_clean[10:ncol(model_data_all_serum_clean)], 2, FUN = function(x) IQR(x, na.rm = TRUE))
serum_quantiles <- apply(model_data_all_serum_clean[10:ncol(model_data_all_serum_clean)], 2, FUN = function(x) quantile(x, na.rm = TRUE))
j <- 10
while(j <= ncol(model_data_all_serum_clean)) {
model_data_all_serum_transformed[!is.na(model_data_all_serum_clean[, j]) & model_data_all_serum_clean[, j] > serum_quantiles[4, j-9] + serum_IQRs[j-9] * 1.5, j] <- NA # Set everything 1.5xIQR above 75% to NA
model_data_all_serum_transformed[!is.na(model_data_all_serum_clean[, j]) & model_data_all_serum_clean[, j] < serum_quantiles[2, j-9] - serum_IQRs[j-9] * 1.5, j] <- NA # Set everything 1.5xIQR below 25% to NA
# Calculate mean and normalize
model_data_all_serum_transformed_mean[j-9] <- mean(model_data_all_serum_transformed[, j], na.rm=TRUE) # Get mean for metabolite
model_data_all_serum_transformed[, j] <- model_data_all_serum_transformed[, j] - model_data_all_serum_transformed_mean[j-9] # Subtract mean from values to make mean 0
j <- j + 1
}
## Define functions for analysis
# Regression for serum (uses age at visit max)
get_effect_pval_serum <- function(metab_name, model_data, status) {
readings <- cbind(model_data[,1:9], model_data[,metab_name])
colnames(readings)[ncol(readings)] <- "reading"
readings <- readings[!is.na(readings$reading),]
if (length(unique(readings$msex)) > 1 & length(unique(readings$cogdx)) > 1) {
model <- glm(reading ~ cogdx + age_at_visit_max + msex,
data = readings, family = gaussian)
data.frame(
metab_name = metab_name,
effect = as.matrix(summary(model)$coefficients)[paste("cogdx", status, sep = ""),"Estimate"],
pval = as.matrix(summary(model)$coefficients)[paste("cogdx", status, sep = ""),"Pr(>|t|)"]
)
}
else {
data.frame(
metab_name = metab_name,
effect = NA,
pval = NA
)
}
}
## Serum Analysis
# AD vs CO - serum
model_data_ad_serum <-
model_data_all_serum_transformed %>%
filter(cogdx %in% c("AD", "CO"), !is.na(age_at_visit_max))
model_data_ad_serum$cogdx <- relevel(model_data_ad_serum$cogdx, ref = "CO")
# Check for subject missingness
# Remove phenotypic variables
ROSMAP_only_metabs_serum <- model_data_ad_serum[,-1:-9]
# Find individuals who are missing >20% of readings
missingness_subjects_serum <- c()
for (i in 1:nrow(ROSMAP_only_metabs_serum)) {
missingness_subjects_serum[i] <- sum(is.na(ROSMAP_only_metabs_serum[i,]))/ncol(ROSMAP_only_metabs_serum)
}
which(missingness_subjects_serum > .2) # None
# saveRDS(model_data_ad_serum, "data/09-model_data_ad_ROSMAP_serum.rds")
# Create data frame with effects, pvals, and padj for each metabolite
ad_serum_effect_pval_df <- ldply(colnames(model_data_ad_serum[,-1:-9]),
get_effect_pval_serum,
model_data = model_data_ad_serum,
status = "AD")
ad_serum_effect_pval_df$padj <- p.adjust(ad_serum_effect_pval_df$pval, method = "BH")
# saveRDS(ad_serum_effect_pval_df, "data/09-effect_pval_ROSMAP_serum.rds")