generated from carpentries/workshop-template
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday4_subsetting_ggplot.R
109 lines (69 loc) · 2.09 KB
/
day4_subsetting_ggplot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# git clone https://github.com/babeheim/gapminder-analysis
download.file("https://raw.githubusercontent.com/swcarpentry/r-novice-gapminder/gh-pages/_episodes_rmd/data/gapminder_data.csv", destfile = "data/gapminder_data.csv")
getwd()
# rm(list=ls())
# setwd("gapminder-analysis/")
x <- c(5.4, 6.2, 7.1, 4.8, 7.5)
names(x) <- c("a", "b", "c", "d", "e")
x[1]
x[3]
x[c(1, 3)]
x[1:3]
x[6]
length(x)
x[0]
x[-1]
x[-(1:3)]
# Subsetting by name
x
x[c("a", "c")]
# Subsetting logical vector
x
x[c(FALSE, FALSE, TRUE, FALSE, FALSE)]
x[x<7]
# names(x) != c("a", "c")
# names(x)
length(x)
!names(x) %in% c("a", "c")
############# Check/ Explore Dataframe
library(ggplot2)
df <- read.csv("data/gapminder_data.csv", stringsAsFactors = FALSE)
str(df)
library(plyr)
library(dplyr)
# plyr::select()
# dplyr::select()
unique(df$country)
length(unique(df$country))
unique(df$continent)
table(df$continent, df$country)
str(df)
range(df$year)
summary(df$year)
mean(df$lifeExp)
tapply(df$lifeExp, df$continent, mean)
########### Subset Dataframes
asia <- df[df$continent == "Asia", ]
asia <- asia[asia$country != "Hong Kong China", ]
# asia <- asia[!asia$country %in% "Hong Kong China", ]
#
# asia <- subset(asia, country != "Hong Kong China")
asia <- asia[!asia$country %in% c("Afghanistan", "Syria"), ]
# dir.create(path = "output", showWarnings = FALSE) # never turn off warnings
asia[asia$country == "Iraq" & asia$year > 2002, ]
asia <- asia[!(asia$country == "Iraq" & asia$year > 2002), ]
print("We successfully subsetted Asia.")
write.csv(asia, file = "output/asia_cleaned.csv", row.names = FALSE)
gapminder <- read.csv("data/gapminder_data.csv", stringsAsFactors = FALSE)
library(ggplot2)
ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
geom_point()
ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) +
geom_point()
# in ggplot, arguments are inherited *down* from the "top" layer
ggplot(gapminder, aes(x = year, y = lifeExp, color = continent)) +
geom_point()
ggplot(gapminder, aes(x = year, y = lifeExp, color = continent, by = country)) +
geom_line() +
geom_point() +
NULL