-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsplitrec_qfp_optimization.py
289 lines (239 loc) · 8.17 KB
/
splitrec_qfp_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import secretflow as sf
print('The version of SecretFlow:{}'.format(sf.__version__))
sf.shutdown()
sf.init(['alice','bob'],address='local',log_to_driver=False)
alice,bob=sf.PYU('alice'),sf.PYU('bob')
#3
def load_data(filename,columns):
data={}
with open(filename,"r",encoding="unicode_escape") as f:
for line in f:
ls=line.strip("\n").split("::")
data[ls[0]]=dict(zip(columns[1:],ls[1:]))
return data
#4
fed_csv={alice:"alice_reddit.csv",bob:"bob_reddit.csv"}
csv_writer_container={alice:open(fed_csv[alice],"w"),bob:open(fed_csv[bob],"w")}
part_columns={
alice:["UserName","Gender","Age"],
bob:["PostID","UserRating","Title","CreatedUTC","NumComments"]
}
#5
for device,writer in csv_writer_container.items():
writer.write("ID,"+",".join(part_columns[device])+"\n")
#6
f=open("/home/sherlock/Documents/post/ratings.dat","r",encoding="unicode_escape")
users_data=load_data(
"/home/sherlock/Documents/post/users.dat",
columns=["UserName","Gender","Age"],
)
posts_data=load_data("/home/sherlock/Documents/post/posts.dat",columns=["PostID","Title","NumComments"])
ratings_columns=["UserName","PostID","UserRating","CreatedUTC"]
rating_data=load_data("/home/sherlock/Documents/post/ratings.dat",columns=ratings_columns)
def _parse_example(feature,columns,index):
if "Title" in feature.keys():
feature["Title"]=feature["Title"].replace(",","_")
values=[]
values.append(str(index))
for c in columns:
values.append(feature[c])
return ",".join(values)
index=0
num_sample=1000
for line in f:
ls=line.strip().split("::")
rating=dict(zip(ratings_columns,ls))
rating.update(users_data.get(ls[0]))
rating.update(posts_data.get(ls[1]))
for device,columns in part_columns.items():
parse_f=_parse_example(rating,columns,index)
csv_writer_container[device].write(parse_f+"\n")
index+=1
if num_sample>0 and index>=num_sample:
break
for w in csv_writer_container.values():
w.close()
#9
def create_dataset_builder_alice(
batch_size=128,
repeat_count=5,
):
def dataset_builder(x):
import pandas as pd
import tensorflow as tf
x=[dict(t) if isinstance(t,pd.DataFrame) else t for t in x]
x=x[0] if len(x)==1 else tuple(x)
data_set=(
tf.data.Dataset.from_tensor_slices(x).batch(batch_size).repeat(repeat_count)
)
return data_set
return dataset_builder
def create_dataset_builder_bob(
batch_size=128,
repeat_count=5,
):
def _parse_bob(row_sample,label):
import tensorflow as tf
y_t=label["UserRating"]
y=tf.expand_dims(
tf.where(
y_t>3,
tf.ones_like(y_t,dtype=tf.float32),
tf.zeros_like(y_t,dtype=tf.float32),
),
axis=1,
)
return row_sample,y
def dataset_builder(x):
import pandas as pd
import tensorflow as tf
x=[dict(t) if isinstance(t,pd.DataFrame) else t for t in x]
x=x[0] if len(x)==1 else tuple(x)
data_set=(
tf.data.Dataset.from_tensor_slices(x).batch(batch_size).repeat(repeat_count)
)
data_set=data_set.map(_parse_bob)
return data_set
return dataset_builder
data_builder_dict={
alice:create_dataset_builder_alice(
batch_size=128,
repeat_count=5,
),
bob:create_dataset_builder_bob(
batch_size=128,
repeat_count=5,
),
}
#10
from secretflow.ml.nn.applications.sl_deep_fm import DeepFMbase,DeepFMfuse
from secretflow.ml.nn import SLModel
NUM_USERS=197
NUM_POSTS=631
GENDER_VOCAB=["Female","Male","Other","Non-binary"]
AGE_VOCAB=[1,18,25,35,45,50,56]
COMMENT_VOCAB=[1,1000,4000,8000,10000,15000]
#11
def create_base_model_alice():
def create_model():
import tensorflow as tf
def preprocess():
inputs={
"UserName":tf.keras.Input(shape=(1,),dtype=tf.string),
"Gender":tf.keras.Input(shape=(1,),dtype=tf.string),
"Age":tf.keras.Input(shape=(1,),dtype=tf.int64),
}
user_id_output=tf.keras.layers.Hashing(
num_bins=NUM_USERS,output_mode="one_hot"
)
user_gender_output=tf.keras.layers.StringLookup(
vocabulary=GENDER_VOCAB,output_mode="one_hot"
)
user_age_out=tf.keras.layers.IntegerLookup(
vocabulary=AGE_VOCAB,output_mode="one_hot"
)
outputs={
"UserName":user_id_output(inputs["UserName"]),
"Gender":user_gender_output(inputs["Gender"]),
"Age":user_age_out(inputs["Age"]),
}
return tf.keras.Model(inputs=inputs,outputs=outputs)
preprocess_layer=preprocess()
model=DeepFMbase(
dnn_units_size=[256,32],
preprocess_layer=preprocess_layer,
)
model.compile(
loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adam(),
)
return model
return create_model
#12
def create_base_model_bob():
def create_model():
import tensorflow as tf
def preprocess():
inputs = {
"PostID": tf.keras.Input(shape=(1,), dtype=tf.string),
"NumComments": tf.keras.Input(shape=(1,), dtype=tf.int64),
}
post_id_out = tf.keras.layers.Hashing(
num_bins=NUM_POSTS, output_mode="one_hot"
)
post_comment_output = tf.keras.layers.IntegerLookup(
vocabulary=COMMENT_VOCAB, output_mode="one_hot"
)
outputs = {
"PostID": post_id_out(inputs["PostID"]),
"NumComments": post_comment_output(inputs["NumComments"]),
}
return tf.keras.Model(inputs=inputs, outputs=outputs)
preprocess_layer = preprocess()
model = DeepFMbase(
dnn_units_size=[256, 32],
preprocess_layer=preprocess_layer,
)
model.compile(
loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adam(),
)
return model
return create_model
#13
def create_fuse_model():
def create_model():
import tensorflow as tf
model=DeepFMfuse(dnn_units_size=[256,256,32])
model.compile(
loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adam(),
metrics=[
tf.keras.metrics.AUC(),
tf.keras.metrics.Precision(),
tf.keras.metrics.Recall(),
],
)
return model
return create_model
#14
base_model_dict={alice:create_base_model_alice(),bob:create_base_model_bob()}
model_fuse=create_fuse_model()
#15
from secretflow.data.vertical import read_csv as v_read_csv
from secretflow.ml.nn import SLModel
vdf=v_read_csv(
{alice:"alice_reddit.csv",bob:"bob_reddit.csv"},keys="ID",drop_keys="ID"
)
label=vdf["UserRating"]
data=vdf.drop(columns=["UserRating","CreatedUTC","Title"])
data["UserName"]=data["UserName"].astype("string")
data["PostID"]=data["PostID"].astype("string")
sl_model_origin=SLModel(
base_model_dict=base_model_dict,
device_y=bob,
model_fuse=model_fuse,
)
from secretflow.utils.compressor import QuantizedFP
qfp = QuantizedFP()
sl_model_compress = SLModel(
base_model_dict=base_model_dict,
device_y=bob,
model_fuse=model_fuse,
compressor=qfp, # 在这里传入实例化的compressor算法
)
histories = []
for sl_model in [sl_model_origin, sl_model_compress]:
history = sl_model.fit(
data,
label,
validation_data=(data,label),
epochs=5,
batch_size=128,
random_seed=1234,
dataset_builder=data_builder_dict,
shuffle=True,
verbose=1,
validation_freq=1,
)
histories.append(history)