-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathval.py
188 lines (158 loc) · 8.34 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import sys
import torch
import logging
import subprocess
from subprocess import Popen
import argparse
import zipfile
from pathlib import Path
import shutil
import threading
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from yolov5.utils.general import LOGGER, check_requirements, print_args, increment_path
from yolov5.utils.torch_utils import select_device
from trackPass import run
def download_official_mot_eval_tool(dst_val_tools_folder):
# source: https://github.com/JonathonLuiten/TrackEval#official-evaluation-code
val_tools_url = "https://github.com/JonathonLuiten/TrackEval"
try:
Repo.clone_from(val_tools_url, dst_val_tools_folder)
LOGGER.info('Official MOT evaluation repo downloaded')
except git.exc.GitError as err:
LOGGER.info('Eval repo already downloaded')
def download_mot_dataset(dst_val_tools_folder, benchmark):
gt_data_url = 'https://omnomnom.vision.rwth-aachen.de/data/TrackEval/data.zip'
subprocess.run(["wget", "-nc", gt_data_url, "-O", dst_val_tools_folder / 'data.zip']) # python module has no -nc nor -N flag
if not (dst_val_tools_folder / 'data').is_dir():
with zipfile.ZipFile(dst_val_tools_folder / 'data.zip', 'r') as zip_ref:
zip_ref.extractall(dst_val_tools_folder)
LOGGER.info('MOTs ground truth downloaded')
else:
LOGGER.info('gt already downloaded')
mot_gt_data_url = 'https://motchallenge.net/data/' + benchmark + '.zip'
subprocess.run(["wget", "-nc", mot_gt_data_url, "-O", dst_val_tools_folder / (benchmark + '.zip')]) # python module has no -nc nor -N flag
if not (dst_val_tools_folder / 'data' / benchmark).is_dir():
with zipfile.ZipFile(dst_val_tools_folder / (benchmark + '.zip'), 'r') as zip_ref:
if opt.benchmark == 'MOT16':
zip_ref.extractall(dst_val_tools_folder / 'data' / 'MOT16')
else:
zip_ref.extractall(dst_val_tools_folder / 'data')
LOGGER.info(f'{benchmark} images downloaded')
else:
LOGGER.info(f'{benchmark} data already downloaded')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-weights', type=str, default=WEIGHTS / 'crowdhuman_yolov5m.pt', help='model.pt path(s)')
parser.add_argument('--reid-weights', type=str, default=WEIGHTS / 'osnet_x1_0_dukemtmcreid.pt')
parser.add_argument('--tracking-method', type=str, default='strongsort', help='strongsort, ocsort')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--benchmark', type=str, default='MOT17', help='MOT16, MOT17, MOT20')
parser.add_argument('--split', type=str, default='train', help='existing project/name ok, do not increment')
parser.add_argument('--eval-existing', type=str, default='', help='evaluate existing tracker results under mot_callenge/MOTXX-YY/...')
parser.add_argument('--conf-thres', type=float, default=0.45, help='confidence threshold')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[1280], help='inference size h,w')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
opt = parser.parse_args()
device = []
for a in opt.device.split(','):
try:
a = int(a)
except ValueError:
pass
device.append(a)
opt.device = device
print_args(vars(opt))
return opt
def main(opt):
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
# download eval files
dst_val_tools_folder = ROOT / 'val_utils'
download_official_mot_eval_tool(dst_val_tools_folder)
if any(opt.benchmark is s for s in ['MOT16', 'MOT17', 'MOT20']):
download_mot_dataset(dst_val_tools_folder, opt.benchmark)
# set paths
mot_seqs_path = dst_val_tools_folder / 'data' / opt.benchmark / opt.split
if opt.benchmark == 'MOT17':
# each sequences is present 3 times, one for each detector
# (DPM, FRCNN, SDP). Keep only sequences from one of them
seq_paths = sorted([str(p / 'img1') for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()])
seq_paths = [Path(p) for p in seq_paths if 'FRCNN' in p]
with open(dst_val_tools_folder / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "r") as f: #
lines = f.readlines()
# overwrite MOT17 evaluation sequences to evaluate so that they are not duplicated
with open(dst_val_tools_folder / "data/gt/mot_challenge/seqmaps/MOT17-train.txt", "w") as f:
for line in seq_paths:
f.write(str(line.parent.stem) + '\n')
else:
# this is not the case for MOT16, MOT20 or your custom dataset
seq_paths = [p / 'img1' for p in Path(mot_seqs_path).iterdir() if Path(p).is_dir()]
save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run
MOT_results_folder = dst_val_tools_folder / 'data' / 'trackers' / 'mot_challenge' / Path(str(opt.benchmark) + '-' + str(opt.split)) / save_dir.name / 'data'
(MOT_results_folder).mkdir(parents=True, exist_ok=True) # make
# extend devices to as many sequences are available
if any(isinstance(i,int) for i in opt.device) and len(opt.device) > 1:
devices = opt.device
for a in range(0, len(opt.device) % len(seq_paths)):
opt.device.extend(devices)
opt.device = opt.device[:len(seq_paths)]
if not opt.eval_existing:
processes = []
for i, seq_path in enumerate(seq_paths):
# spawn one subprocess per GPU in increasing order.
# When max devices are reached start at 0 again
tracking_subprocess_device = opt.device[i] if len(opt.device) > 1 else opt.device[0]
dst_seq_path = seq_path.parent / seq_path.parent.name
if not dst_seq_path.is_dir():
src_seq_path = seq_path
shutil.move(str(src_seq_path), str(dst_seq_path))
p = subprocess.Popen([
"python", "track.py", \
"--yolo-weights", opt.yolo_weights, \
"--reid-weights", opt.reid_weights, \
"--tracking-method", opt.tracking_method, \
"--conf-thres", str(opt.conf_thres), \
"--imgsz", str(opt.imgsz[0]), \
"--classes", str(0), \
"--name", save_dir.name, \
"--project", opt.project, \
"--device", str(tracking_subprocess_device), \
"--source", dst_seq_path, \
"--exist-ok", \
"--save-txt", \
])
processes.append(p)
for p in processes:
p.wait()
results = (save_dir.parent / opt.eval_existing / 'tracks' if opt.eval_existing else save_dir / 'tracks').glob('*.txt')
for src in results:
if opt.eval_existing:
dst = MOT_results_folder.parent.parent / opt.eval_existing / 'data' / Path(src.stem + '.txt')
else:
dst = MOT_results_folder / Path(src.stem + '.txt')
dst.parent.mkdir(parents=True, exist_ok=True) # make
shutil.copyfile(src, dst)
# run the evaluation on the generated txts
subprocess.run([
"python", dst_val_tools_folder / "scripts/run_mot_challenge.py",\
"--BENCHMARK", opt.benchmark,\
"--TRACKERS_TO_EVAL", opt.eval_existing if opt.eval_existing else MOT_results_folder.parent.name,\
"--SPLIT_TO_EVAL", "train",\
"--METRICS", "HOTA", "CLEAR", "Identity",\
"--USE_PARALLEL", "True",\
"--NUM_PARALLEL_CORES", "4"\
])
if __name__ == "__main__":
opt = parse_opt()
main(opt)