-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesis.aux
1397 lines (1397 loc) · 227 KB
/
thesis.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\relax
\providecommand\hyper@newdestlabel[2]{}
\AC@reset@newl@bel
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand \oddpage@label [2]{}
\citation{Fairyland}
\@writefile{toc}{\contentsline {chapter}{Acknowledgements}{v}{section*.1}\protected@file@percent }
\citation{WikipediaSM}
\citation{EllisHiggs}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{YellowReport1}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{LHCRing}
\citation{ATLAS_Jinst}
\citation{coords}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{KriegerECALphoto}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\@writefile{toc}{\contentsline {chapter}{List of Figures}{ix}{section*.3}\protected@file@percent }
\citation{TGCWheel}
\citation{CERN-EX-1301009}
\citation{ATL-COM-PHYS-2020-378}
\citation{ttH}
\citation{ttH}
\citation{YellowReport4}
\citation{YellowReport4}
\citation{PhysRevD.101.012002}
\citation{PhysRevD.101.012002}
\@writefile{toc}{\contentsline {chapter}{List of Tables}{xxvii}{section*.4}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{List of Appendices}{xxxi}{section*.5}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{List of Abbreviations}{xxxii}{section*.7}\protected@file@percent }
\newacro{CERN}[\AC@hyperlink{CERN}{CERN}]{Center for European Nuclear Research}
\newacro{ATLAS}[\AC@hyperlink{ATLAS}{ATLAS}]{A Toroidal LHC ApparatuS}
\newacro{CMS}[\AC@hyperlink{CMS}{CMS}]{Compact Muon Solenoid}
\newacro{LHC}[\AC@hyperlink{LHC}{LHC}]{Large Hadron Collider}
\newacro{LEP}[\AC@hyperlink{LEP}{LEP}]{Large Electron-Positron Collider}
\newacro{CP}[\AC@hyperlink{CP}{CP}]{Charge-Parity}
\newacro{CPT}[\AC@hyperlink{CPT}{CPT}]{Charge-Parity-Time}
\newacro{BDT}[\AC@hyperlink{BDT}{BDT}]{Boosted Decision Tree}
\newacro{QCD}[\AC@hyperlink{QCD}{QCD}]{Quantum Chromodynamics}
\newacro{STXS}[\AC@hyperlink{STXS}{STXS}]{Simplified Template Cross-Section}
\newacro{CKM}[\AC@hyperlink{CKM}{CKM}]{Cabbibo-Kobayashi-Masakawa}
\newacro{LO}[\AC@hyperlink{LO}{LO}]{Leading Order}
\newacro{NLO}[\AC@hyperlink{NLO}{NLO}]{Next-to-Leading Order}
\newacro{NNLO}[\AC@hyperlink{NNLO}{NNLO}]{Next-to-Next-to-Leading Order}
\newacro{PDF}[\AC@hyperlink{PDF}{PDF}]{Parton Distribution Function}
\newacro{SM}[\AC@hyperlink{SM}{SM}]{Standard Model}
\newacro{BSM}[\AC@hyperlink{BSM}{BSM}]{Beyond the Standard Model}
\newacro{HC}[\AC@hyperlink{HC}{HC}]{Higgs Characterization}
\newacro{RF}[\AC@hyperlink{RF}{RF}]{Radiofrequency}
\newacro{SPS}[\AC@hyperlink{SPS}{SPS}]{Super Proton Synchrotron}
\newacro{LINAC}[\AC@hyperlink{LINAC}{LINAC}]{Linear Accelerator}
\newacro{PSB}[\AC@hyperlink{PSB}{PSB}]{Proton Synchrotron Booster}
\newacro{LHCb}[\AC@hyperlink{LHCb}{LHCb}]{Large Hadron Collider Beauty}
\newacro{ALICE}[\AC@hyperlink{ALICE}{ALICE}]{A Large Ion Collider Experiment}
\newacro{HL-LHC}[\AC@hyperlink{HL-LHC}{HL-LHC}]{High-Luminosity Large Hadron Collider}
\newacro{ECAL}[\AC@hyperlink{ECAL}{ECAL}]{Electronic Calorimeter}
\newacro{HCAL}[\AC@hyperlink{HCAL}{HCAL}]{Hadronic Calorimeter}
\newacro{IBL}[\AC@hyperlink{IBL}{IBL}]{Insertable B-Layer}
\newacro{SCT}[\AC@hyperlink{SCT}{SCT}]{Semiconductor Tracker}
\newacro{TRT}[\AC@hyperlink{TRT}{TRT}]{Transition Radiation Tracker}
\newacro{MBTS}[\AC@hyperlink{MBTS}{MBTS}]{Minimum Bias Trigger Scintillator}
\newacro{EM}[\AC@hyperlink{EM}{EM}]{Electromagnetic}
\newacro{LAr}[\AC@hyperlink{LAr}{LAr}]{Liquid Argon}
\newacro{PTP}[\AC@hyperlink{PTP}{PTP}]{p-Terphenyl}
\newacro{POPOP}[\AC@hyperlink{POPOP}{POPOP}]{1,4-Bis(5-Phenyloxazol-2-yl) Benzene}
\newacro{HEC}[\AC@hyperlink{HEC}{HEC}]{Hadronic Endcap Calorimeter}
\newacro{FCAL}[\AC@hyperlink{FCAL}{FCAL}]{Forward Cal}
\newacro{MDT}[\AC@hyperlink{MDT}{MDT}]{Monitored Drift Tube}
\newacro{CSC}[\AC@hyperlink{CSC}{CSC}]{Cathode Strip Champer}
\newacro{RPC}[\AC@hyperlink{RPC}{RPC}]{Resistive Plate Chamber}
\newacro{TGC}[\AC@hyperlink{TGC}{TGC}]{Thin Gap Chamber}
\newacro{L1}[\AC@hyperlink{L1}{L1}]{Level 1}
\newacro{CTP}[\AC@hyperlink{CTP}{CTP}]{Central Trigger}
\newacro{L2}[\AC@hyperlink{L2}{L2}]{Level 2}
\newacro{HLT}[\AC@hyperlink{HLT}{HLT}]{High Level Trigger}
\newacro{GEANT4}[\AC@hyperlink{GEANT4}{GEANT4}]{GEometry ANd Tracking 4}
\newacro{ID}[\AC@hyperlink{ID}{ID}]{Identification}
\newacro{JVT}[\AC@hyperlink{JVT}{JVT}]{Jet Vertex Tagger}
\newacro{PFlow}[\AC@hyperlink{PFlow}{PFlow}]{Particle Flow}
\newacro{XGBoost}[\AC@hyperlink{XGBoost}{XGBoost}]{eXtreme Gradient Boost}
\newacro{TMVA}[\AC@hyperlink{TMVA}{TMVA}]{Toolkit for Multivariate Analysis}
\newacro{TI}[\AC@hyperlink{TI}{TI}]{Tight and Isolated}
\newacro{NTI}[\AC@hyperlink{NTI}{NTI}]{Non Tight and Isolated}
\newacro{NNLOPS}[\AC@hyperlink{NNLOPS}{NNLOPS}]{Next to Next to Leading Order Parton Showering}
\newacro{EFT}[\AC@hyperlink{EFT}{EFT}]{Effective Field Theory}
\newacro{CB}[\AC@hyperlink{CB}{CB}]{Crystal Ball}
\newacro{DSCB}[\AC@hyperlink{DSCB}{DSCB}]{Double Sided Crystal Ball}
\newacro{SS}[\AC@hyperlink{SS}{SS}]{Spurious Signal}
\newacro{GPR}[\AC@hyperlink{GPR}{GPR}]{Gaussian Process Regression}
\newacro{SBBDT}[\AC@hyperlink{SBBDT}{SBBDT}]{Signal-Background Boosted Decision Tree}
\newacro{CPBDT}[\AC@hyperlink{CPBDT}{CPBDT}]{Charge-Parity Boosted Decision Tree}
\newacro{ROC-AUC}[\AC@hyperlink{ROC-AUC}{ROC-AUC}]{Receiver Operating Characteristic- Area Under Curve}
\newacro{UEPS}[\AC@hyperlink{UEPS}{UEPS}]{Underlying Event and Parton Shower}
\newacro{CLs}[\AC@hyperlink{CLs}{CLs}]{Confidence Levels}
\newacro{LUCID}[\AC@hyperlink{LUCID}{LUCID}]{LUminosity Cherenkov Integrating Detector}
\newacro{KLFitter}[\AC@hyperlink{KLFitter}{KLFitter}]{Kinematic Likelihood Fitter}
\newacro{BAT}[\AC@hyperlink{BAT}{BAT}]{Bayesian Analysis Toolkit}
\newacro{GaSBaG}[\AC@hyperlink{GaSBaG}{GaSBaG}]{Gaussian Smoothing for BackGrounds}
\newacro{RBF}[\AC@hyperlink{RBF}{RBF}]{Radial Basis Function}
\newacro{GP}[\AC@hyperlink{GP}{GP}]{Gaussian Process}
\newacro{DoF}[\AC@hyperlink{DoF}{DoF}]{Degrees of Freedom}
\@writefile{toc}{\contentsline {chapter}{Abstract}{xxxv}{section*.8}\protected@file@percent }
\citation{HiggsATLAS}
\citation{HiggsCMS}
\citation{LEPExperiments}
\citation{ttH}
\citation{CPanalysis}
\citation{Couplingsanalysis}
\@writefile{toc}{\vspace {1.3ex}\noindent {\bf Chapter}\vspace {1.3ex}}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:intro}{{1}{1}{Introduction}{chapter.1}{}}
\citation{Peskin}
\citation{kane_2017}
\citation{Griffiths}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}An Overview of the Standard Model}{3}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:theory_chapter}{{2}{3}{An Overview of the Standard Model}{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}The Standard Model}{3}{section.2.1}\protected@file@percent }
\newlabel{sec:SM}{{2.1}{3}{The Standard Model}{section.2.1}{}}
\citation{CKM1}
\citation{CKM2}
\citation{WikipediaSM}
\citation{WikipediaSM}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces The ``periodic table" of the Standard Model, depicting the three generations of fermions, the gauge bosons, and the Higgs \cite {WikipediaSM}.\relax }}{5}{figure.caption.9}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.1}Lagrangians, Fields, and Gauge Transformations}{6}{subsection.2.1.1}\protected@file@percent }
\newlabel{sec:Lagrangians}{{2.1.1}{6}{Lagrangians, Fields, and Gauge Transformations}{subsection.2.1.1}{}}
\newlabel{eq:Dirac}{{2.3}{7}{Lagrangians, Fields, and Gauge Transformations}{equation.2.1.3}{}}
\citation{Sakharov}
\citation{CKM1}
\citation{CKM2}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}CP-Symmetry}{9}{section.2.2}\protected@file@percent }
\newlabel{sec:CPT}{{2.2}{9}{CP-Symmetry}{section.2.2}{}}
\citation{Higgs}
\citation{EllisHiggs}
\citation{EllisHiggs}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}The Higgs Mechanism and Electroweak Symmetry Breaking}{10}{section.2.3}\protected@file@percent }
\newlabel{sec:EWSB}{{2.3}{10}{The Higgs Mechanism and Electroweak Symmetry Breaking}{section.2.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces The ``wine bottle" Higgs potential hill, from reference \cite {EllisHiggs}\relax }}{11}{figure.caption.10}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:potential}{{2.2}{11}{The ``wine bottle" Higgs potential hill, from reference \cite {EllisHiggs}\relax }{figure.caption.10}{}}
\newlabel{eq:min}{{2.15}{12}{The Higgs Mechanism and Electroweak Symmetry Breaking}{equation.2.3.15}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}The Higgs Boson and Its Couplings}{14}{section.2.4}\protected@file@percent }
\newlabel{sec:Higgs Couplings}{{2.4}{14}{The Higgs Boson and Its Couplings}{section.2.4}{}}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\newlabel{fig:ggF}{{2.3a}{15}{ggF\relax }{figure.caption.11}{}}
\newlabel{sub@fig:ggF}{{a}{15}{ggF\relax }{figure.caption.11}{}}
\newlabel{fig:VBF}{{2.3b}{15}{VBF\relax }{figure.caption.11}{}}
\newlabel{sub@fig:VBF}{{b}{15}{VBF\relax }{figure.caption.11}{}}
\newlabel{fig:VH}{{2.3c}{15}{VH\relax }{figure.caption.11}{}}
\newlabel{sub@fig:VH}{{c}{15}{VH\relax }{figure.caption.11}{}}
\newlabel{fig:Higgsmodes}{{\caption@xref {fig:Higgsmodes}{ on input line 302}}{15}{The Higgs Boson and Its Couplings}{figure.caption.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Feynman diagrams depicting the three leading Higgs production modes. Made with \cite {FeynmanMaker}\relax }}{15}{figure.caption.11}\protected@file@percent }
\newlabel{fig:bbH}{{2.4a}{16}{bbH\relax }{figure.caption.12}{}}
\newlabel{sub@fig:bbH}{{a}{16}{bbH\relax }{figure.caption.12}{}}
\newlabel{fig:ggZH}{{2.4b}{16}{gg $\rightarrow ZH$ \relax }{figure.caption.12}{}}
\newlabel{sub@fig:ggZH}{{b}{16}{gg $\rightarrow ZH$ \relax }{figure.caption.12}{}}
\newlabel{fig:ggZH}{{2.4c}{16}{Additional gg $\rightarrow ZH$ \relax }{figure.caption.12}{}}
\newlabel{sub@fig:ggZH}{{c}{16}{Additional gg $\rightarrow ZH$ \relax }{figure.caption.12}{}}
\newlabel{fig:loopmodes}{{\caption@xref {fig:loopmodes}{ on input line 329}}{16}{The Higgs Boson and Its Couplings}{figure.caption.12}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Feynman diagrams depicting relevant less-common Higgs production modes. Made with \cite {FeynmanMaker}\relax }}{16}{figure.caption.12}\protected@file@percent }
\newlabel{fig:ttH1}{{\caption@xref {fig:ttH1}{ on input line 338}}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{sub@fig:ttH1}{{}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{fig:ttH2}{{\caption@xref {fig:ttH2}{ on input line 344}}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{sub@fig:ttH2}{{}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{fig:ttH3}{{\caption@xref {fig:ttH3}{ on input line 350}}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{sub@fig:ttH3}{{}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{fig:ttH4}{{\caption@xref {fig:ttH4}{ on input line 356}}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{sub@fig:ttH4}{{}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\newlabel{fig:loopmodes}{{\caption@xref {fig:loopmodes}{ on input line 359}}{16}{The Higgs Boson and Its Couplings}{figure.caption.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces Feynman diagrams depicting ttH production modes. Made with \cite {FeynmanMaker}\relax }}{16}{figure.caption.13}\protected@file@percent }
\citation{YellowReport1}
\citation{YellowReport1}
\citation{YellowReport4}
\citation{YellowReport4}
\newlabel{fig:toploop}{{2.6a}{17}{Top-mediated\relax }{figure.caption.14}{}}
\newlabel{sub@fig:toploop}{{a}{17}{Top-mediated\relax }{figure.caption.14}{}}
\newlabel{fig:Wloop1}{{2.6b}{17}{W $\rightarrow \gamma $ \relax }{figure.caption.14}{}}
\newlabel{sub@fig:Wloop1}{{b}{17}{W $\rightarrow \gamma $ \relax }{figure.caption.14}{}}
\newlabel{fig:Wloop2}{{2.6c}{17}{W $\rightarrow \gamma \gamma $\relax }{figure.caption.14}{}}
\newlabel{sub@fig:Wloop2}{{c}{17}{W $\rightarrow \gamma \gamma $\relax }{figure.caption.14}{}}
\newlabel{fig:loopmodes}{{\caption@xref {fig:loopmodes}{ on input line 386}}{17}{The Higgs Boson and Its Couplings}{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces Feynman diagrams depicting the leading-order processes contributing to the Higgs diphoton decay. Made with \cite {FeynmanMaker}\relax }}{17}{figure.caption.14}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces The branching ratio of the Higgs to various final state particles as a function of its mass (now known to be \nobreakspace {}125 GeV), from reference \cite {YellowReport1}.\relax }}{18}{figure.caption.15}\protected@file@percent }
\citation{FedericotH}
\citation{FedericotWH}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{FeynmanMaker}
\citation{Aad_2016}
\citation{Khachatryan_2016}
\citation{Sirunyan_2019}
\citation{Zhang_2011}
\citation{Ellis}
\citation{Brod_2013}
\@writefile{lot}{\contentsline {table}{\numberline {2.1}{\ignorespaces Higgs decay modes and branching fractions, for a Standard Model Higgs with mass of 125.09 GeV \cite {YellowReport4}\relax }}{19}{table.caption.16}\protected@file@percent }
\newlabel{mytable}{{2.1}{19}{Higgs decay modes and branching fractions, for a Standard Model Higgs with mass of 125.09 GeV \cite {YellowReport4}\relax }{table.caption.16}{}}
\newlabel{fig:tWH1}{{2.8a}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{sub@fig:tWH1}{{a}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{fig:tWH2}{{2.8b}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{sub@fig:tWH2}{{b}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{fig:tWH3}{{2.8c}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{sub@fig:tWH3}{{c}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{fig:tWH4}{{2.8d}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{sub@fig:tWH4}{{d}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{fig:tWH5}{{2.8e}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{sub@fig:tWH5}{{e}{20}{A tWH mode\relax }{figure.caption.17}{}}
\newlabel{fig:tWHmodes}{{\caption@xref {fig:tWHmodes}{ on input line 467}}{20}{The Higgs Boson and Its Couplings}{figure.caption.17}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Feynman diagrams depicting the leading-order terms for $tWH$. Because all diagrams contain initial b-quarks, all of these processes can only occur in the five-flavor PDF scheme. Made with \cite {FeynmanMaker}\relax }}{20}{figure.caption.17}\protected@file@percent }
\newlabel{fig:tHjb1}{{2.9a}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{sub@fig:tHjb1}{{a}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{fig:tHjb2}{{2.9b}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{sub@fig:tHjb2}{{b}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{fig:tHjb3}{{2.9c}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{sub@fig:tHjb3}{{c}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{fig:tHjb4}{{2.9d}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{sub@fig:tHjb4}{{d}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{fig:tHjb5}{{2.9e}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{sub@fig:tHjb5}{{e}{21}{A tHjb mode\relax }{figure.caption.18}{}}
\newlabel{fig:tHjbmodes}{{\caption@xref {fig:tHjbmodes}{ on input line 507}}{21}{The Higgs Boson and Its Couplings}{figure.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Feynman diagrams depicting the leading-order terms for $tHjb$, made with \cite {FeynmanMaker}. These diagrams are calculated using the four-flavor PDF scheme. Note that additional diagrams can be created by reversing the direction of the upper fermion ``circuit" (the final-state top and bottom must be opposite sign, but $tHj\bar {b}$ and $\bar {t}Hjb$ are equally likely to occur).\relax }}{21}{figure.caption.18}\protected@file@percent }
\citation{Aaboud_2018}
\citation{couplings80fb}
\citation{HC}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}CP-Violation in the Top Yukawa Coupling}{22}{subsection.2.4.1}\protected@file@percent }
\newlabel{sec:CP-yukawa}{{2.4.1}{22}{CP-Violation in the Top Yukawa Coupling}{subsection.2.4.1}{}}
\citation{Maltoni_2001}
\citation{Ellis}
\citation{LHCTDR}
\citation{SPS}
\citation{LHCTDR}
\citation{ATLAS_TDR}
\citation{CMS_TDR}
\citation{LHCb_TDR}
\citation{ALICE_TDR}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}The ATLAS Detector}{24}{chapter.3}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:detector_chapter}{{3}{24}{The ATLAS Detector}{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}The Large Hadron Collider}{24}{section.3.1}\protected@file@percent }
\newlabel{sec:LHC}{{3.1}{24}{The Large Hadron Collider}{section.3.1}{}}
\citation{LHCRing}
\citation{LHCRing}
\citation{ATLAS-CONF-2019-021}
\citation{HLLHC}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces The infrastructure of the LHC accelerator ring, including the SPS and LINAC2. \cite {LHCRing}\relax }}{25}{figure.caption.19}\protected@file@percent }
\newlabel{fig:LHC}{{3.1}{25}{The infrastructure of the LHC accelerator ring, including the SPS and LINAC2. \cite {LHCRing}\relax }{figure.caption.19}{}}
\citation{ATLAS_TDR}
\citation{muonsTDR}
\citation{DiehlMuons}
\citation{ATLAS_TDR}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{coords}
\citation{coords}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}The ATLAS Detector}{26}{section.3.2}\protected@file@percent }
\newlabel{sec:ATLAS}{{3.2}{26}{The ATLAS Detector}{section.3.2}{}}
\citation{ID}
\citation{IBL_TDR}
\citation{ATLAS_TDR}
\citation{IBL_TDR}
\citation{Knoll}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces A diagram of the various subsystems of the ATLAS detector. \cite {ATLAS_Jinst}\relax }}{27}{figure.caption.20}\protected@file@percent }
\newlabel{fig:ATLAS}{{3.2}{27}{A diagram of the various subsystems of the ATLAS detector. \cite {ATLAS_Jinst}\relax }{figure.caption.20}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Inner Detector}{27}{subsection.3.2.1}\protected@file@percent }
\newlabel{sec:ID}{{3.2.1}{27}{Inner Detector}{subsection.3.2.1}{}}
\citation{Pixel}
\citation{TRT}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces The coordinate system used to define the ATLAS detector geometry. \cite {coords}\relax }}{28}{figure.caption.21}\protected@file@percent }
\newlabel{fig:coords}{{3.3}{28}{The coordinate system used to define the ATLAS detector geometry. \cite {coords}\relax }{figure.caption.21}{}}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{misconceptions}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Solenoid Magnet}{29}{subsection.3.2.2}\protected@file@percent }
\newlabel{sec:solenoid}{{3.2.2}{29}{Solenoid Magnet}{subsection.3.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Calorimeters}{29}{subsection.3.2.3}\protected@file@percent }
\newlabel{sec:Calos}{{3.2.3}{29}{Calorimeters}{subsection.3.2.3}{}}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces An illustration of the Inner Detector. \cite {ATLAS_Jinst}\relax }}{30}{figure.caption.22}\protected@file@percent }
\newlabel{fig:ID}{{3.4}{30}{An illustration of the Inner Detector. \cite {ATLAS_Jinst}\relax }{figure.caption.22}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3.1}ECAL}{30}{subsubsection.3.2.3.1}\protected@file@percent }
\newlabel{sec:ECAL}{{3.2.3.1}{30}{ECAL}{subsubsection.3.2.3.1}{}}
\citation{LAr_TDR}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{KriegerECALphoto}
\citation{KriegerECALphoto}
\citation{Discussion}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces An illustration of the ATLAS calorimeter systems. \cite {ATLAS_Jinst}\relax }}{31}{figure.caption.23}\protected@file@percent }
\newlabel{fig:Calos}{{3.5}{31}{An illustration of the ATLAS calorimeter systems. \cite {ATLAS_Jinst}\relax }{figure.caption.23}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces A cutaway diagram of the barrel ECAL depicting the ``accordion" absorber geometry \cite {ATLAS_Jinst}\relax }}{32}{figure.caption.24}\protected@file@percent }
\newlabel{fig:ECALdiagram}{{3.6}{32}{A cutaway diagram of the barrel ECAL depicting the ``accordion" absorber geometry \cite {ATLAS_Jinst}\relax }{figure.caption.24}{}}
\citation{Presampler}
\citation{misconceptions}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces A photograph of an ECAL absorber. \cite {KriegerECALphoto}\relax }}{33}{figure.caption.25}\protected@file@percent }
\newlabel{fig:ECALphoto}{{3.7}{33}{A photograph of an ECAL absorber. \cite {KriegerECALphoto}\relax }{figure.caption.25}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.3.2}HCAL}{33}{subsubsection.3.2.3.2}\protected@file@percent }
\newlabel{sec:HCAL}{{3.2.3.2}{33}{HCAL}{subsubsection.3.2.3.2}{}}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_TDR}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces A diagram of the TileCal geometry \cite {ATLAS_Jinst}\relax }}{35}{figure.caption.26}\protected@file@percent }
\newlabel{fig:TileCalDiagram}{{3.8}{35}{A diagram of the TileCal geometry \cite {ATLAS_Jinst}\relax }{figure.caption.26}{}}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces A diagram of the FCAL geometry \cite {ATLAS_Jinst}\relax }}{36}{figure.caption.27}\protected@file@percent }
\newlabel{fig:FCAL}{{3.9}{36}{A diagram of the FCAL geometry \cite {ATLAS_Jinst}\relax }{figure.caption.27}{}}
\citation{Coldmass}
\citation{Toroid}
\citation{Magnets}
\citation{Stopping}
\citation{PDG}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.4}Toroid Magnets}{37}{subsection.3.2.4}\protected@file@percent }
\newlabel{sec:toroids}{{3.2.4}{37}{Toroid Magnets}{subsection.3.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.5}Muon Spectrometer}{37}{subsection.3.2.5}\protected@file@percent }
\newlabel{sec:Musyst}{{3.2.5}{37}{Muon Spectrometer}{subsection.3.2.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces A diagram of the Muon System \cite {ATLAS_Jinst}\relax }}{38}{figure.caption.28}\protected@file@percent }
\newlabel{fig:MuSyst}{{3.10}{38}{A diagram of the Muon System \cite {ATLAS_Jinst}\relax }{figure.caption.28}{}}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{ATLAS_Jinst}
\citation{Boudreau}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces A diagram of a Monitored Drift Tube \cite {ATLAS_Jinst}\relax }}{39}{figure.caption.29}\protected@file@percent }
\newlabel{fig:MDT}{{3.11}{39}{A diagram of a Monitored Drift Tube \cite {ATLAS_Jinst}\relax }{figure.caption.29}{}}
\citation{CSCs}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces A diagram of the MDT chamber geometry from two positions, one looking down the beam pipe and one alongside the detector. \cite {ATLAS_Jinst}\relax }}{40}{figure.caption.30}\protected@file@percent }
\newlabel{fig:MDTChamber}{{3.12}{40}{A diagram of the MDT chamber geometry from two positions, one looking down the beam pipe and one alongside the detector. \cite {ATLAS_Jinst}\relax }{figure.caption.30}{}}
\citation{ATLAS_Jinst}
\citation{TGCWheel}
\citation{TGCWheel}
\citation{MBTS}
\citation{trigger}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.6}Trigger}{41}{subsection.3.2.6}\protected@file@percent }
\newlabel{sec:Trigger}{{3.2.6}{41}{Trigger}{subsection.3.2.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces A photograph of the TGC wheels. \cite {TGCWheel}\relax }}{42}{figure.caption.31}\protected@file@percent }
\newlabel{fig:TGCWheel}{{3.13}{42}{A photograph of the TGC wheels. \cite {TGCWheel}\relax }{figure.caption.31}{}}
\citation{Powheg}
\citation{MG5}
\citation{Pythia8.1}
\citation{Pythia8.2}
\citation{Herwig}
\citation{GEANT4}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Experimental Methods}{44}{chapter.4}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:methods_chapter}{{4}{44}{Experimental Methods}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Experimental Methods}{44}{section.4.1}\protected@file@percent }
\newlabel{sec:methods}{{4.1}{44}{Experimental Methods}{section.4.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}Monte Carlo}{44}{subsection.4.1.1}\protected@file@percent }
\newlabel{sec:MC}{{4.1.1}{44}{Monte Carlo}{subsection.4.1.1}{}}
\citation{Aad_2010}
\citation{CERN-EX-1301009}
\citation{CERN-EX-1301009}
\citation{tracker}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Reconstruction and Tagging}{45}{subsection.4.1.2}\protected@file@percent }
\newlabel{sec:Reco}{{4.1.2}{45}{Reconstruction and Tagging}{subsection.4.1.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.3}Tracks}{45}{subsection.4.1.3}\protected@file@percent }
\newlabel{sec:Tracks}{{4.1.3}{45}{Tracks}{subsection.4.1.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Shapes and signatures of a variety of objects in the detector \cite {CERN-EX-1301009}\relax }}{46}{figure.caption.32}\protected@file@percent }
\newlabel{fig:Signatures}{{4.1}{46}{Shapes and signatures of a variety of objects in the detector \cite {CERN-EX-1301009}\relax }{figure.caption.32}{}}
\citation{NEWT}
\citation{VertexMeloni}
\citation{CERN-EP-2019-145}
\citation{ECALdiagram}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.4}Clusters}{47}{subsection.4.1.4}\protected@file@percent }
\newlabel{sec:Clusters}{{4.1.4}{47}{Clusters}{subsection.4.1.4}{}}
\citation{CERN-EP-2019-145}
\citation{ATL-PHYS-PUB-2017-022}
\citation{photuncs}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.5}Electrons and Photons}{48}{subsection.4.1.5}\protected@file@percent }
\newlabel{sec:Electrons}{{4.1.5}{48}{Electrons and Photons}{subsection.4.1.5}{}}
\citation{gammaID}
\citation{elID-CERN-EP-2018-273}
\citation{ATL-COM-PHYS-2020-378}
\citation{CERN-EP-2019-145}
\citation{CERN-EP-2019-145}
\citation{ATL-COM-PHYS-2020-378}
\citation{1408.7084}
\citation{ATL-COM-PHYS-2020-378}
\citation{ATL-COM-PHYS-2020-378}
\citation{ATL-COM-PHYS-2020-378}
\citation{kt}
\citation{CambridgeAachen}
\citation{antikt}
\citation{PFlow}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Shapes and signatures of a variety of objects in the detector \cite {ATL-COM-PHYS-2020-378}\relax }}{52}{figure.caption.33}\protected@file@percent }
\newlabel{fig:Vertexing}{{4.2}{52}{Shapes and signatures of a variety of objects in the detector \cite {ATL-COM-PHYS-2020-378}\relax }{figure.caption.33}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.6}Jets}{52}{subsection.4.1.6}\protected@file@percent }
\newlabel{sec:Jets}{{4.1.6}{52}{Jets}{subsection.4.1.6}{}}
\citation{JVT}
\citation{CERN-EP-2018-047}
\citation{CERN-PH-EP-2015-216}
\citation{ATL-PHYS-PUB-2017-013}
\citation{Hough}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {4.1.6.1}b-jets}{53}{subsubsection.4.1.6.1}\protected@file@percent }
\newlabel{sec:b-jets}{{4.1.6.1}{53}{b-jets}{subsubsection.4.1.6.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.7}Muons}{53}{subsection.4.1.7}\protected@file@percent }
\newlabel{sec:Muons}{{4.1.7}{53}{Muons}{subsection.4.1.7}{}}
\citation{CERN-EP-2016-033}
\citation{ATL-COM-PHYS-2019-177}
\citation{ATL-COM-PHYS-2020-378}
\citation{CERN-EP-2016-033}
\citation{CERN-EP-2017-274}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.8}Overlap Removal}{55}{subsection.4.1.8}\protected@file@percent }
\newlabel{sec:Overlap}{{4.1.8}{55}{Overlap Removal}{subsection.4.1.8}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.9}Missing Transverse Energy}{55}{subsection.4.1.9}\protected@file@percent }
\newlabel{sec:MET}{{4.1.9}{55}{Missing Transverse Energy}{subsection.4.1.9}{}}
\citation{XGBoost}
\citation{BDTs}
\citation{ADABoost}
\citation{BDTs}
\citation{TMVA}
\citation{LightGBM}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.10}Tau Leptons}{56}{subsection.4.1.10}\protected@file@percent }
\newlabel{sec:taus}{{4.1.10}{56}{Tau Leptons}{subsection.4.1.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.11}Top reconstruction}{56}{subsection.4.1.11}\protected@file@percent }
\newlabel{sssec:ttbar_reco}{{4.1.11}{56}{Top reconstruction}{subsection.4.1.11}{}}
\@writefile{toc}{\contentsline {paragraph}{Fully hadronic events}{57}{paragraph*.34}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Leptonic events}{58}{paragraph*.35}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Retraining with PFlow Jets}{58}{paragraph*.36}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Performance of the top reconstruction BDT for the primary top in \ensuremath {\mathrm {t\bar {t}H}}\xspace events. The green ``h025" line indicates the EMTopo training applied to PFlow reconstructed jets, while the red ``h024" line indicates the output of the dedicated PFlow training with PFlow jets. The black line represents the truth-matched reco level distribution.\relax }}{59}{figure.caption.37}\protected@file@percent }
\newlabel{fig:sel_topReco_retrain}{{4.3}{59}{Performance of the top reconstruction BDT for the primary top in \ttH events. The green ``h025" line indicates the EMTopo training applied to PFlow reconstructed jets, while the red ``h024" line indicates the output of the dedicated PFlow training with PFlow jets. The black line represents the truth-matched reco level distribution.\relax }{figure.caption.37}{}}
\citation{ATLAS-CONF-2019-021}
\citation{triggerperformance}
\@writefile{toc}{\contentsline {chapter}{\numberline {5}Data and Monte Carlo Samples}{60}{chapter.5}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:datamc_chapter}{{5}{60}{Data and Monte Carlo Samples}{chapter.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.1}Data, Monte Carlo, and HGam Pre-selection}{60}{section.5.1}\protected@file@percent }
\newlabel{sec:DataMC}{{5.1}{60}{Data, Monte Carlo, and HGam Pre-selection}{section.5.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}Data}{60}{subsection.5.1.1}\protected@file@percent }
\newlabel{sec:Data}{{5.1.1}{60}{Data}{subsection.5.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Integrated luminosity for the Run-2 ATLAS data-taking period.\relax }}{60}{figure.caption.38}\protected@file@percent }
\newlabel{fig:datalumi}{{5.1}{60}{Integrated luminosity for the Run-2 ATLAS data-taking period.\relax }{figure.caption.38}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Pileup for the Run-2 ATLAS data-taking period.\relax }}{61}{figure.caption.39}\protected@file@percent }
\newlabel{fig:pileup}{{5.2}{61}{Pileup for the Run-2 ATLAS data-taking period.\relax }{figure.caption.39}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces Efficiency of the trigger for the different years of the run-2 data taking period as a function of subleading photon $E_{T}$.\relax }}{61}{figure.caption.40}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.2}Nominal and Alternative Monte Carlo Samples}{61}{subsection.5.1.2}\protected@file@percent }
\newlabel{sec:NominalMC}{{5.1.2}{61}{Nominal and Alternative Monte Carlo Samples}{subsection.5.1.2}{}}
\citation{MG5}
\citation{Powheg}
\citation{PowhegBox}
\citation{Pythia8.1}
\citation{Pythia8.2}
\citation{Herwig}
\citation{Herwig7}
\citation{Herwig7.1}
\citation{EvGen}
\citation{Sherpa1}
\citation{Sherpa2}
\citation{Comix}
\citation{GEANT4}
\citation{Aad_2010}
\citation{Pythia8.1}
\citation{A3}
\citation{YellowReport4}
\citation{MadSpin}
\citation{NNLOPS}
\citation{PDF4LHC}
\citation{AZNLO}
\citation{CTEQ6}
\citation{PowhegBox}
\citation{A14}
\citation{NNPDF23}
\citation{NNPDF30}
\citation{FedericotWH}
\citation{subtraction}
\citation{NNPDF30}
\citation{YellowReport4}
\citation{HDecay1}
\citation{HDecay2}
\citation{HDecay3}
\citation{Prophecy1}
\citation{Prophecy2}
\citation{Prophecy3}
\@writefile{lot}{\contentsline {table}{\numberline {5.1}{\ignorespaces Summary of nominal signal samples\relax }}{63}{table.caption.41}\protected@file@percent }
\newlabel{tab:signal_samples_pyt}{{5.1}{63}{Summary of nominal signal samples\relax }{table.caption.41}{}}
\citation{YellowReport4}
\citation{YellowReport4}
\citation{CT10}
\citation{HC}
\@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces Summary of alternative signal samples\relax }}{64}{table.caption.42}\protected@file@percent }
\newlabel{tab:signal_samples_herwig}{{5.2}{64}{Summary of alternative signal samples\relax }{table.caption.42}{}}
\@writefile{lot}{\contentsline {table}{\numberline {5.3}{\ignorespaces Cross sections times branching ratio values used to normalize each production mode. The values correspond to the state-of-the-art predictions and are taken from the CERN Yellow Report \cite {YellowReport4}.\relax }}{64}{table.caption.43}\protected@file@percent }
\newlabel{tab:signal_samples_norm}{{5.3}{64}{Cross sections times branching ratio values used to normalize each production mode. The values correspond to the state-of-the-art predictions and are taken from the CERN Yellow Report \cite {YellowReport4}.\relax }{table.caption.43}{}}
\citation{YellowReport4}
\@writefile{lot}{\contentsline {table}{\numberline {5.4}{\ignorespaces Summary of nominal background samples\relax }}{65}{table.caption.44}\protected@file@percent }
\newlabel{tab:bckg_samples}{{5.4}{65}{Summary of nominal background samples\relax }{table.caption.44}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.3}ttHCP Monte Carlo Samples}{65}{subsection.5.1.3}\protected@file@percent }
\newlabel{sec:ttHCPMC}{{5.1.3}{65}{ttHCP Monte Carlo Samples}{subsection.5.1.3}{}}
\@writefile{lot}{\contentsline {table}{\numberline {5.5}{\ignorespaces Parameters used in the Higgs Characterization model in order to allow for a CP-variant Higgs coupling only to the top quark. The HWW coupling is fixed to its SM value by imposing cos$\alpha \nobreakspace {}\kappa _{SM}$=1. In the set of samples above the line, $\kappa _{t}$ is fixed to 1 and $\alpha $ is varied, while in those below, $\kappa _{t}$ is set to values not equal to 1. Pure CP-odd samples with $\qopname \relax o{cos}\alpha $ strictly equal to 0 cannot be generated due to numerical precision concerns, and thus a value approaching it ($10^{-6}$) and a corresponding value for kSM ($10^{6}$) are used.\relax }}{66}{table.caption.45}\protected@file@percent }
\newlabel{tab:MCsamples_Parameters}{{5.5}{66}{Parameters used in the Higgs Characterization model in order to allow for a CP-variant Higgs coupling only to the top quark. The HWW coupling is fixed to its SM value by imposing cos$\alpha ~\kappa _{SM}$=1. In the set of samples above the line, $\kappa _{t}$ is fixed to 1 and $\alpha $ is varied, while in those below, $\kappa _{t}$ is set to values not equal to 1. Pure CP-odd samples with $\cos \alpha $ strictly equal to 0 cannot be generated due to numerical precision concerns, and thus a value approaching it ($10^{-6}$) and a corresponding value for kSM ($10^{6}$) are used.\relax }{table.caption.45}{}}
\@writefile{lot}{\contentsline {table}{\numberline {5.6}{\ignorespaces NLO cross-sections for the $t\bar {t}H$, $tHjb$, $tWH$, and $ggF$ processes for the different CP-scenarios (see parameters in Table\nobreakspace {}\ref {tab:MCsamples_Parameters}). In the samples above the line, $\kappa _{t}$ is fixed to 1 and $\alpha $ is varied, while in the samples below the line, $\kappa _{t}$ is not equal to 1.\relax }}{66}{table.caption.46}\protected@file@percent }
\newlabel{tab:MCsamples_XS}{{5.6}{66}{NLO cross-sections for the $t\bar {t}H$, $tHjb$, $tWH$, and $ggF$ processes for the different CP-scenarios (see parameters in Table~\ref {tab:MCsamples_Parameters}). In the samples above the line, $\kappa _{t}$ is fixed to 1 and $\alpha $ is varied, while in the samples below the line, $\kappa _{t}$ is not equal to 1.\relax }{table.caption.46}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1.4}Higgs Preselection and Data CRs}{66}{subsection.5.1.4}\protected@file@percent }
\newlabel{sec:Preselection}{{5.1.4}{66}{Higgs Preselection and Data CRs}{subsection.5.1.4}{}}
\@writefile{lot}{\contentsline {table}{\numberline {5.7}{\ignorespaces Normalized NLO cross-sections for the $t\bar {t}H$, $tHjb$, $tWH$, and $ggF$ processes for the different CP-scenarios, scaled using the K-factors and the value of BR$(H\rightarrow \gamma \gamma )$. In the samples above the line, $\kappa _{t}$ is fixed to 1 and $\alpha $ is varied, while in the samples below the line, $\kappa _{t}$ is not equal to 1.\relax }}{67}{table.caption.47}\protected@file@percent }
\newlabel{tab:MCsamples_XS_norm}{{5.7}{67}{Normalized NLO cross-sections for the $t\bar {t}H$, $tHjb$, $tWH$, and $ggF$ processes for the different CP-scenarios, scaled using the K-factors and the value of BR$(H\rightarrow \gamma \gamma )$. In the samples above the line, $\kappa _{t}$ is fixed to 1 and $\alpha $ is varied, while in the samples below the line, $\kappa _{t}$ is not equal to 1.\relax }{table.caption.47}{}}
\citation{Peskin}
\citation{SlowNeutrons}
\citation{CB}
\citation{DSCB}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}Signal Parameterization, Background Parametrization, and Statistical Methods}{69}{chapter.6}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:sigbkgparam}{{6}{69}{Signal Parameterization, Background Parametrization, and Statistical Methods}{chapter.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.1}Signal Modelling}{69}{section.6.1}\protected@file@percent }
\newlabel{sec:example_section}{{6.1}{69}{Signal Modelling}{section.6.1}{}}
\citation{Higgsmass}
\citation{gammaID}
\newlabel{fig:DSCBgg2H}{{6.1a}{70}{$gg \rightarrow H$ ( 1-jet, $120 GeV \le p_{T}^{H} < 200 GeV$)\caption@thelabel \relax }{figure.caption.48}{}}
\newlabel{sub@fig:DSCBgg2H}{{a}{70}{$gg \rightarrow H$ ( 1-jet, $120 GeV \le p_{T}^{H} < 200 GeV$)\caption@thelabel \relax }{figure.caption.48}{}}
\newlabel{fig:DSCBttH}{{6.1b}{70}{\ttH \caption@thelabel \relax }{figure.caption.48}{}}
\newlabel{sub@fig:DSCBttH}{{b}{70}{\ttH \caption@thelabel \relax }{figure.caption.48}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces DSCB shapes for two groups of categories. \ref {fig:DSCBgg2H} depicts the signal shapes for two categories targeting the same $ggH$ STXS truth bin, one low-purity and one high-purity. \ref {fig:DSCBttH} depicts the signal shapes for three high-purity categories targeting different $p_{T}^{H}$ regions of the $ttH$ process.\relax }}{70}{figure.caption.48}\protected@file@percent }
\newlabel{fig:DSCB}{{6.1}{70}{DSCB shapes for two groups of categories. \ref {fig:DSCBgg2H} depicts the signal shapes for two categories targeting the same $ggH$ STXS truth bin, one low-purity and one high-purity. \ref {fig:DSCBttH} depicts the signal shapes for three high-purity categories targeting different $p_{T}^{H}$ regions of the $ttH$ process.\relax }{figure.caption.48}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.2}Background Modelling and Spurious Signal}{70}{section.6.2}\protected@file@percent }
\newlabel{sec:background_modelling}{{6.2}{70}{Background Modelling and Spurious Signal}{section.6.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces A cartoon depicting the spurious signal procedure. The true background shape in red is modeled by an analytic function in blue. The spurious signal resulting from this mismodelling is the maximum signal yield extracted from the blue ``spurious signal" bump, fit over a window of $120$ GeV $< m_{\gamma \gamma }<130$ GeV.\relax }}{71}{figure.caption.49}\protected@file@percent }
\newlabel{fig:SScartoon}{{6.2}{71}{A cartoon depicting the spurious signal procedure. The true background shape in red is modeled by an analytic function in blue. The spurious signal resulting from this mismodelling is the maximum signal yield extracted from the blue ``spurious signal" bump, fit over a window of $120$ GeV $< m_{\gamma \gamma }<130$ GeV.\relax }{figure.caption.49}{}}
\newlabel{sec:bkgtemplates}{{6.2}{71}{Background Modelling and Spurious Signal}{section.6.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.3}{\ignorespaces A cartoon depicting the ``relaxed" spurious signal procedure. Two-sigma fluctuations of the background are incorporated into the spurious signal procedure in order to select a functional form.\relax }}{72}{figure.caption.50}\protected@file@percent }
\newlabel{fig:SSrelaxed}{{6.3}{72}{A cartoon depicting the ``relaxed" spurious signal procedure. Two-sigma fluctuations of the background are incorporated into the spurious signal procedure in order to select a functional form.\relax }{figure.caption.50}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.4}{\ignorespaces An example of the Wald test being performed in two low-statistics Couplings categories. The exponential functional form is chosen in both cases.\relax }}{73}{figure.caption.51}\protected@file@percent }
\newlabel{fig:WaldTest}{{6.4}{73}{An example of the Wald test being performed in two low-statistics Couplings categories. The exponential functional form is chosen in both cases.\relax }{figure.caption.51}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Background Templates}{73}{subsection.6.2.1}\protected@file@percent }
\newlabel{sec:bkgtemplates}{{6.2.1}{73}{Background Templates}{subsection.6.2.1}{}}
\citation{purity1}
\citation{purity2}
\citation{purity1}
\citation{purity2}
\citation{kappaFW}
\citation{PhysRevD.101.012002}
\citation{PhysRevD.101.012002}
\citation{PhysRevD.101.012002}
\citation{PhysRevD.101.012002}
\citation{PhysRevD.101.012002}
\citation{YellowReport4}
\@writefile{toc}{\contentsline {section}{\numberline {6.3}The Kappa Framework}{75}{section.6.3}\protected@file@percent }
\newlabel{sec:kappaFW}{{6.3}{75}{The Kappa Framework}{section.6.3}{}}
\@writefile{lot}{\contentsline {table}{\numberline {6.1}{\ignorespaces Parameterization of Higgs cross-section dependence on $\kappa $ coefficients, from \cite {PhysRevD.101.012002}\relax }}{75}{table.caption.52}\protected@file@percent }
\newlabel{tab:Xsecskappa}{{6.1}{75}{Parameterization of Higgs cross-section dependence on $\kappa $ coefficients, from \cite {PhysRevD.101.012002}\relax }{table.caption.52}{}}
\citation{antikt}
\@writefile{lot}{\contentsline {table}{\numberline {6.2}{\ignorespaces Parameterization of Higgs branching ratio dependence on $\kappa $ coefficients, from \cite {PhysRevD.101.012002}\relax }}{76}{table.caption.53}\protected@file@percent }
\newlabel{tab:BRskappa}{{6.2}{76}{Parameterization of Higgs branching ratio dependence on $\kappa $ coefficients, from \cite {PhysRevD.101.012002}\relax }{table.caption.53}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.4}Simplified Template Cross-Sections}{76}{section.6.4}\protected@file@percent }
\newlabel{sec:STXS}{{6.4}{76}{Simplified Template Cross-Sections}{section.6.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.5}{\ignorespaces Stage 1.2 STXS bin definitions for the main production modes.\relax }}{77}{figure.caption.54}\protected@file@percent }
\newlabel{fig:STXS_scheme}{{6.5}{77}{Stage 1.2 STXS bin definitions for the main production modes.\relax }{figure.caption.54}{}}
\citation{Cowan}
\@writefile{lof}{\contentsline {figure}{\numberline {6.6}{\ignorespaces Stage 1.2 STXS bin acceptances for all Higgs production modes considered in the Couplings analysis. The FWDH bins target events outside the nominal acceptance, i.e. with $|y_{H}|>2.5$.\relax }}{78}{figure.caption.56}\protected@file@percent }
\newlabel{fig:STXS_acceptances}{{6.6}{78}{Stage 1.2 STXS bin acceptances for all Higgs production modes considered in the Couplings analysis. The FWDH bins target events outside the nominal acceptance, i.e. with $|y_{H}|>2.5$.\relax }{figure.caption.56}{}}
\@writefile{lot}{\contentsline {table}{\numberline {6.3}{\ignorespaces Simplified template cross sections times diphoton branching ratio for each of the STXS 1.2 truth bins.\relax }}{79}{table.caption.55}\protected@file@percent }
\newlabel{tab:STXS_cross_sections}{{6.3}{79}{Simplified template cross sections times diphoton branching ratio for each of the STXS 1.2 truth bins.\relax }{table.caption.55}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6.5}Likelihood Fitting and Asimov Data}{80}{section.6.5}\protected@file@percent }
\newlabel{sec:likelihoodfit}{{6.5}{80}{Likelihood Fitting and Asimov Data}{section.6.5}{}}
\citation{Cranmer}
\citation{JSConway}
\citation{XGBoost}
\citation{ttH}
\citation{ATLAS-CONF-2019-004}
\@writefile{toc}{\contentsline {chapter}{\numberline {7}Study of the CP Properties of the Top Quark Yukawa Interaction in $t\bar {t}H$ and $tH$ Events with $H \rightarrow \gamma \gamma $: Selection and Categorization}{82}{chapter.7}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:tthcp_chapter}{{7}{82}{Study of the CP Properties of the Top Quark Yukawa Interaction in $t\bar {t}H$ and $tH$ Events with $H \rightarrow \gamma \gamma $: Selection and Categorization}{chapter.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7.1}Categorization}{82}{section.7.1}\protected@file@percent }
\newlabel{sec:ttHCPCategorization}{{7.1}{82}{Categorization}{section.7.1}{}}
\citation{ttH}
\citation{ttH}
\@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Diagram of the 2-dimensional categorization scheme in the hadronic (a) and leptonic (b) channels. The $x$-axis indicates the background-rejection BDT (SBBDT) score distribution, and the $y$-axis represents the CP-BDT score distribution. The shaded region indicates rejected events.\relax }}{83}{figure.caption.57}\protected@file@percent }
\newlabel{fig:cartoon}{{7.1}{83}{Diagram of the 2-dimensional categorization scheme in the hadronic (a) and leptonic (b) channels. The $x$-axis indicates the background-rejection BDT (SBBDT) score distribution, and the $y$-axis represents the CP-BDT score distribution. The shaded region indicates rejected events.\relax }{figure.caption.57}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1.1}SBBDT}{83}{subsection.7.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.1.1}Hadronic Region}{83}{subsubsection.7.1.1.1}\protected@file@percent }
\newlabel{sec:SBBDThad}{{7.1.1.1}{83}{Hadronic Region}{subsubsection.7.1.1.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Distributions of training variables for the hadronic background-rejection BDT, trained at $79.8 fb^{-1}$. Taken from \cite {ttH}. \relax }}{84}{figure.caption.58}\protected@file@percent }
\newlabel{fig:SBBDTvarshad}{{7.2}{84}{Distributions of training variables for the hadronic background-rejection BDT, trained at $79.8 fb^{-1}$. Taken from \cite {ttH}. \relax }{figure.caption.58}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {7.1.1.2}Leptonic Region}{84}{subsubsection.7.1.1.2}\protected@file@percent }
\newlabel{sec:SBBDTlep}{{7.1.1.2}{84}{Leptonic Region}{subsubsection.7.1.1.2}{}}
\citation{ttH}
\citation{ttH}
\@writefile{lof}{\contentsline {figure}{\numberline {7.3}{\ignorespaces Distributions of training variables for the leptonic background-rejection BDT, trained at $79.8 fb^{-1}$. Taken from \cite {ttH}.\relax }}{85}{figure.caption.59}\protected@file@percent }
\newlabel{fig:SBBDTvarslep}{{7.3}{85}{Distributions of training variables for the leptonic background-rejection BDT, trained at $79.8 fb^{-1}$. Taken from \cite {ttH}.\relax }{figure.caption.59}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.4}{\ignorespaces SB BDT score for the sum of $ttH$, $tHjb$ and $tWH$, with relative weights according to their expected cross sections. Shown in (a) for the hadronic channel and (b) for the leptonic channel, for various CP mixing scenarios. The open squares show data in the NTI sideband region, which approximates the shape of the continuum background. \relax }}{86}{figure.caption.60}\protected@file@percent }
\newlabel{fig:moriondtotal}{{7.4}{86}{SB BDT score for the sum of $ttH$, $tHjb$ and $tWH$, with relative weights according to their expected cross sections. Shown in (a) for the hadronic channel and (b) for the leptonic channel, for various CP mixing scenarios. The open squares show data in the NTI sideband region, which approximates the shape of the continuum background. \relax }{figure.caption.60}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1.2}CP-Sensitive Observables}{86}{subsection.7.1.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.5}{\ignorespaces Truth-level distributions in $t\bar {t}H$ Monte Carlo of the Higgs $p_{T}$, Higgs $\eta $, and top quark $p_{T}$ (top row), top quark $\eta $ and angular separation between the top and anti-top (second row), signed $\Delta \phi $ between the leading top quark and, in order: the subleading top, the daughter W of the other top quark, and the highest $p_{T}$ light jet from the hadronic decay of the subleading top (third row) and invariant mass of the top-Higgs system (bottom row) for different values of $\alpha $.\relax }}{87}{figure.caption.61}\protected@file@percent }
\newlabel{fig:ttH_truth}{{7.5}{87}{Truth-level distributions in $t\bar {t}H$ Monte Carlo of the Higgs $p_{T}$, Higgs $\eta $, and top quark $p_{T}$ (top row), top quark $\eta $ and angular separation between the top and anti-top (second row), signed $\Delta \phi $ between the leading top quark and, in order: the subleading top, the daughter W of the other top quark, and the highest $p_{T}$ light jet from the hadronic decay of the subleading top (third row) and invariant mass of the top-Higgs system (bottom row) for different values of $\alpha $.\relax }{figure.caption.61}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.6}{\ignorespaces Truth-level distributions in $tWH$ Monte Carlo of the Higgs boson $p_{T}$ and $\eta $ (top), top quark $p_{T}$ and $\eta $ (middle) and invariant mass of the top-Higgs system (bottom) for different values of the CP mixing angle $\alpha $.\relax }}{88}{figure.caption.62}\protected@file@percent }
\newlabel{fig:tWH_truth}{{7.6}{88}{Truth-level distributions in $tWH$ Monte Carlo of the Higgs boson $p_{T}$ and $\eta $ (top), top quark $p_{T}$ and $\eta $ (middle) and invariant mass of the top-Higgs system (bottom) for different values of the CP mixing angle $\alpha $.\relax }{figure.caption.62}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.7}{\ignorespaces Truth-level distributions in $tHjb$ Monte Carlo of the Higgs boson $p_{T}$ and $\eta $ (top), angular separation between top and anti-top quarks (second row), top quark $p_{T}$ and $\eta $ (third row) and invariant mass of the top-Higgs system (bottom) for different values of the CP mixing angle $\alpha $.\relax }}{89}{figure.caption.63}\protected@file@percent }
\newlabel{fig:tHjb_truth}{{7.7}{89}{Truth-level distributions in $tHjb$ Monte Carlo of the Higgs boson $p_{T}$ and $\eta $ (top), angular separation between top and anti-top quarks (second row), top quark $p_{T}$ and $\eta $ (third row) and invariant mass of the top-Higgs system (bottom) for different values of the CP mixing angle $\alpha $.\relax }{figure.caption.63}{}}
\citation{TMVA}
\citation{skopt}
\citation{ROC}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1.3}CPBDT}{90}{subsection.7.1.3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.8}{\ignorespaces Leptonic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background.\relax }}{91}{figure.caption.64}\protected@file@percent }
\newlabel{fig:lepvbls1}{{7.8}{91}{Leptonic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background.\relax }{figure.caption.64}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.9}{\ignorespaces Leptonic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The underflow bins in hybrid top $p_{T}$/$\eta $/ $\phi $ and $\Delta \eta _{t1t2}$/ $\Delta \phi _{t1t2}$ contain events where no second (`hybrid') top is reconstructed, while the underflow bin in the BDT score contains events with fewer than six jets (i.e., events with either no hybrid top or a hybrid top that is reconstructed using the remaining-jets method). The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background. \relax }}{92}{figure.caption.65}\protected@file@percent }
\newlabel{fig:lepvbls2}{{7.9}{92}{Leptonic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The underflow bins in hybrid top $p_{T}$/$\eta $/ $\phi $ and $\Delta \eta _{t1t2}$/ $\Delta \phi _{t1t2}$ contain events where no second (`hybrid') top is reconstructed, while the underflow bin in the BDT score contains events with fewer than six jets (i.e., events with either no hybrid top or a hybrid top that is reconstructed using the remaining-jets method). The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background. \relax }{figure.caption.65}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.10}{\ignorespaces Leptonic BDT training variables. The underflow bins in $m_{t2H}$ and $m_{t1t2}$ contain events where no second (`hybrid') top is reconstructed. The open squares indicate data in the NTI sideband region, which approximates the continuum background shape. \relax }}{93}{figure.caption.66}\protected@file@percent }
\newlabel{fig:lepvbls3}{{7.10}{93}{Leptonic BDT training variables. The underflow bins in $m_{t2H}$ and $m_{t1t2}$ contain events where no second (`hybrid') top is reconstructed. The open squares indicate data in the NTI sideband region, which approximates the continuum background shape. \relax }{figure.caption.66}{}}
\citation{skopt}
\@writefile{lof}{\contentsline {figure}{\numberline {7.11}{\ignorespaces Hadronic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background. \relax }}{94}{figure.caption.67}\protected@file@percent }
\newlabel{fig:hadvbls1}{{7.11}{94}{Hadronic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background. \relax }{figure.caption.67}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1.4}Poisson Number-Counting Significance}{94}{subsection.7.1.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {7.12}{\ignorespaces Hadronic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The underflow bins in top $p_{T}$/$\eta $/ $\phi $ and $\Delta \eta _{t1t2}$/ $\Delta \phi _{t1t2}$ contain events where no second (`hybrid') top is reconstructed, while the underflow bin in the BDT score contains events with fewer than six jets (i.e., events with either no hybrid top or a hybrid top that is reconstructed using the remaining-jets method). The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background. \relax }}{95}{figure.caption.68}\protected@file@percent }
\newlabel{fig:hadvbls2}{{7.12}{95}{Hadronic BDT training variables. The top $\phi $ is calculated with respect to the Higgs candidate. The underflow bins in top $p_{T}$/$\eta $/ $\phi $ and $\Delta \eta _{t1t2}$/ $\Delta \phi _{t1t2}$ contain events where no second (`hybrid') top is reconstructed, while the underflow bin in the BDT score contains events with fewer than six jets (i.e., events with either no hybrid top or a hybrid top that is reconstructed using the remaining-jets method). The open squares indicate data in the NTI sideband region, which approximates the shape of the continuum background. \relax }{figure.caption.68}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.13}{\ignorespaces Hadronic BDT training variables. The underflow bins in $m_{t2H}$ and $m_{t1t2}$ contain events where no second (`hybrid') top is reconstructed. The open squares indicate data in the NTI sideband region, which approximates the continuum background shape. \relax }}{96}{figure.caption.69}\protected@file@percent }
\newlabel{fig:hadvbls2}{{7.13}{96}{Hadronic BDT training variables. The underflow bins in $m_{t2H}$ and $m_{t1t2}$ contain events where no second (`hybrid') top is reconstructed. The open squares indicate data in the NTI sideband region, which approximates the continuum background shape. \relax }{figure.caption.69}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.14}{\ignorespaces Hadronic and Leptonic CP BDT scores for $ttH$+$tHjb$+$tWH$, with relative weights according to their expected cross sections under various CP mixing scenarios. The open squares show data in the NTI sideband region. \relax }}{97}{figure.caption.70}\protected@file@percent }
\newlabel{fig:cpscores}{{7.14}{97}{Hadronic and Leptonic CP BDT scores for $ttH$+$tHjb$+$tWH$, with relative weights according to their expected cross sections under various CP mixing scenarios. The open squares show data in the NTI sideband region. \relax }{figure.caption.70}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.15}{\ignorespaces Distribution of events from TI sidebands, CP even signal, and CP odd signal in the 2D background rejection BDT vs. CP BDT plane in the hadronic category are shown in full color, black, and red contours, respectively, along with 1D projections onto each BDT score. Inner (outer) contours contain 25\% (50\%) of signal events.\relax }}{97}{figure.caption.71}\protected@file@percent }
\newlabel{fig:2dbdthad}{{7.15}{97}{Distribution of events from TI sidebands, CP even signal, and CP odd signal in the 2D background rejection BDT vs. CP BDT plane in the hadronic category are shown in full color, black, and red contours, respectively, along with 1D projections onto each BDT score. Inner (outer) contours contain 25\% (50\%) of signal events.\relax }{figure.caption.71}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.16}{\ignorespaces Distribution of events from TI sidebands, CP even signal, and CP odd signal in the 2D background rejection BDT vs. CP BDT plane in the leptonic category are shown in full color, black, and red contours, respectively, along with 1D projections onto each BDT score. Inner (outer) contours contain 25\% (50\%) of signal events.\relax }}{98}{figure.caption.72}\protected@file@percent }
\newlabel{fig:2dbdtlep}{{7.16}{98}{Distribution of events from TI sidebands, CP even signal, and CP odd signal in the 2D background rejection BDT vs. CP BDT plane in the leptonic category are shown in full color, black, and red contours, respectively, along with 1D projections onto each BDT score. Inner (outer) contours contain 25\% (50\%) of signal events.\relax }{figure.caption.72}{}}
\newlabel{eq:ncztth}{{7.3}{98}{Poisson Number-Counting Significance}{equation.7.1.3}{}}
\newlabel{eq:nczcp}{{7.4}{98}{Poisson Number-Counting Significance}{equation.7.1.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1.5}2D Categorization}{99}{subsection.7.1.5}\protected@file@percent }
\newlabel{eq:statunc}{{7.6}{99}{2D Categorization}{equation.7.1.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.17}{\ignorespaces $Z_{CP}$ vs. $Z_{ttH}$ for all sets of boundaries considered.\relax }}{100}{figure.caption.73}\protected@file@percent }
\newlabel{fig:optimal}{{7.17}{100}{$Z_{CP}$ vs. $Z_{ttH}$ for all sets of boundaries considered.\relax }{figure.caption.73}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.18}{\ignorespaces (Left) Event yields in the CP categories. Shown separately for $\alpha = 0^{\circ }$ and $\alpha = 90^{\circ }$. (Right) purity of the Higgs yield in each category for $\alpha = 0^{\circ }$ and $\alpha = 90^{\circ }$. Yields are calculated in the signal window $m_{\gamma \gamma }=125\pm 2$ GeV.\relax }}{100}{figure.caption.75}\protected@file@percent }
\newlabel{fig:nominalb}{{7.18}{100}{(Left) Event yields in the CP categories. Shown separately for $\alpha = 0^{\circ }$ and $\alpha = 90^{\circ }$. (Right) purity of the Higgs yield in each category for $\alpha = 0^{\circ }$ and $\alpha = 90^{\circ }$. Yields are calculated in the signal window $m_{\gamma \gamma }=125\pm 2$ GeV.\relax }{figure.caption.75}{}}
\@writefile{lot}{\contentsline {table}{\numberline {7.1}{\ignorespaces Category boundaries which optimize the Poisson number-counting rejection significance of the CP odd scenario in the 12 hadronic and 8 leptonic categories.\relax }}{101}{table.caption.74}\protected@file@percent }
\newlabel{tab:boundaries}{{7.1}{101}{Category boundaries which optimize the Poisson number-counting rejection significance of the CP odd scenario in the 12 hadronic and 8 leptonic categories.\relax }{table.caption.74}{}}
\@writefile{lot}{\contentsline {table}{\numberline {7.2}{\ignorespaces Comparison of statistical uncertainty with key systematics and CP-Odd vs. SM separation in each category. PS indicates parton showering uncertainty, calculated by subtracting the yields from the Herwig and the Pythia Monte Carlo samples.\relax }}{102}{table.caption.77}\protected@file@percent }
\newlabel{tab:systs}{{7.2}{102}{Comparison of statistical uncertainty with key systematics and CP-Odd vs. SM separation in each category. PS indicates parton showering uncertainty, calculated by subtracting the yields from the Herwig and the Pythia Monte Carlo samples.\relax }{table.caption.77}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7.19}{\ignorespaces The impact of systematic uncertainties on the number counting limit. There is a small change of $0.3^\circ $ on the number-counting limit, thus indicating that systematics do no appreciably affect the categorization.\relax }}{102}{figure.caption.78}\protected@file@percent }
\newlabel{fig:ncrej_syst}{{7.19}{102}{The impact of systematic uncertainties on the number counting limit. There is a small change of $0.3^\circ $ on the number-counting limit, thus indicating that systematics do no appreciably affect the categorization.\relax }{figure.caption.78}{}}
\@writefile{lot}{\contentsline {table}{\numberline {7.3}{\ignorespaces Significance metrics for the full twenty-category CP BDT categorization, calculated using event yields in the signal $m_{\gamma \gamma }$ region $125\pm 2$ GeV.\relax }}{103}{table.caption.79}\protected@file@percent }
\newlabel{tab:sigs}{{7.3}{103}{Significance metrics for the full twenty-category CP BDT categorization, calculated using event yields in the signal $m_{\gamma \gamma }$ region $125\pm 2$ GeV.\relax }{table.caption.79}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {8}Study of the CP Properties of the Top Quark Yukawa Interaction in $t\bar {t}H$ and $tH$ Events with $H \rightarrow \gamma \gamma $: Results}{104}{chapter.8}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:tthcp_results}{{8}{104}{Study of the CP Properties of the Top Quark Yukawa Interaction in $t\bar {t}H$ and $tH$ Events with $H \rightarrow \gamma \gamma $: Results}{chapter.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.1}Yield Dependence on $\alpha $}{104}{section.8.1}\protected@file@percent }
\newlabel{sec:YieldPar}{{8.1}{104}{Yield Dependence on $\alpha $}{section.8.1}{}}
\newlabel{fig:ttHYield}{{8.1a}{105}{$ttH$\relax }{figure.caption.80}{}}
\newlabel{sub@fig:ttHYield}{{a}{105}{$ttH$\relax }{figure.caption.80}{}}
\newlabel{fig:tWHYield}{{8.1b}{105}{$tWH$\relax }{figure.caption.80}{}}
\newlabel{sub@fig:tWHYield}{{b}{105}{$tWH$\relax }{figure.caption.80}{}}
\newlabel{fig:tHjbYield}{{8.1c}{105}{$tHjb$\relax }{figure.caption.80}{}}
\newlabel{sub@fig:tHjbYield}{{c}{105}{$tHjb$\relax }{figure.caption.80}{}}
\newlabel{fig:YieldParams}{{\caption@xref {fig:YieldParams}{ on input line 44}}{105}{Yield Dependence on $\alpha $}{figure.caption.80}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.1}{\ignorespaces Inclusive yield parametrizations as a function of $\kappa _{t}$ and $\alpha $, normalized to $139 fb^{-1}$.\relax }}{105}{figure.caption.80}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {8.2}Signal and Background Parameterization}{105}{section.8.2}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {8.1}{\ignorespaces Best-fit parameter values for the DSCB Gaussian core and exponential tails in each of the 20 analysis categories.\relax }}{106}{table.caption.81}\protected@file@percent }
\newlabel{tab:sig_param}{{8.1}{106}{Best-fit parameter values for the DSCB Gaussian core and exponential tails in each of the 20 analysis categories.\relax }{table.caption.81}{}}
\citation{LHAPDF}
\citation{PDF4LHC}
\@writefile{lot}{\contentsline {table}{\numberline {8.2}{\ignorespaces Spurious signal test results in the 20 analysis categories.\relax }}{107}{table.caption.82}\protected@file@percent }
\newlabel{tab:spuriousSignal_1}{{8.2}{107}{Spurious signal test results in the 20 analysis categories.\relax }{table.caption.82}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.3}Systematic Uncertainty}{107}{section.8.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {8.3.1}Theory Systematics}{107}{subsection.8.3.1}\protected@file@percent }
\citation{YellowReport4}
\citation{Wb}
\citation{Zb}
\citation{ttbb}
\citation{HZZ4l}
\citation{Herwig}
\citation{Pythia8.2}
\citation{ATLAS-CONF-2019-021}
\citation{trigger}
\citation{triggerperformance}
\citation{jetuncs1}
\citation{jetuncs2}
\citation{jetuncs3}
\citation{jetuncs4}
\citation{CERN-EP-2019-145}
\citation{photuncs}
\citation{CERN-EP-2019-145}
\citation{photuncs}
\citation{elID-CERN-EP-2018-273}
\citation{CERN-EP-2016-033}
\citation{MET1}
\citation{MET2}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.3.2}Experimental Systematics}{108}{subsection.8.3.2}\protected@file@percent }
\citation{Higgsmass}
\@writefile{lot}{\contentsline {table}{\numberline {8.3}{\ignorespaces A summary of the theory uncertainties used in the likelihood model.\relax }}{109}{table.caption.83}\protected@file@percent }
\newlabel{tab:theorysyst}{{8.3}{109}{A summary of the theory uncertainties used in the likelihood model.\relax }{table.caption.83}{}}
\@writefile{toc}{\contentsline {section}{\numberline {8.4}Results and Interpretations}{109}{section.8.4}\protected@file@percent }
\newlabel{sec:results}{{8.4}{109}{Results and Interpretations}{section.8.4}{}}
\citation{couplings80fb}
\citation{Ellis}
\@writefile{lot}{\contentsline {table}{\numberline {8.4}{\ignorespaces A summary of the experimental uncertainties used in the likelihood model.\relax }}{110}{table.caption.84}\protected@file@percent }
\newlabel{tab:expsyst}{{8.4}{110}{A summary of the experimental uncertainties used in the likelihood model.\relax }{table.caption.84}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.2}{\ignorespaces Diphoton invariant mass spectrum ($m_{\gamma \gamma }$) in the first six hadronic categories. The fitted continuum background is shown in blue the, total background including non-top Higgs processes is shown in green, and total fitted signal plus background is shown in red.\relax }}{111}{figure.caption.90}\protected@file@percent }
\newlabel{fig:invmass_had1}{{8.2}{111}{Diphoton invariant mass spectrum ($m_{\gamma \gamma }$) in the first six hadronic categories. The fitted continuum background is shown in blue the, total background including non-top Higgs processes is shown in green, and total fitted signal plus background is shown in red.\relax }{figure.caption.90}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.3}{\ignorespaces Diphoton invariant mass spectrum ($m_{\gamma \gamma }$) in the second six hadronic categories. The fitted continuum background is shown in blue the, total background including non-top Higgs processes is shown in green, and total fitted signal plus background is shown in red.\relax }}{112}{figure.caption.91}\protected@file@percent }
\newlabel{fig:invmass_had2}{{8.3}{112}{Diphoton invariant mass spectrum ($m_{\gamma \gamma }$) in the second six hadronic categories. The fitted continuum background is shown in blue the, total background including non-top Higgs processes is shown in green, and total fitted signal plus background is shown in red.\relax }{figure.caption.91}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.4}{\ignorespaces Diphoton invariant mass spectrum ($m_{\gamma \gamma }$) in the eight leptonic categories. The fitted continuum background is shown in blue the, total background including non-top Higgs processes is shown in green, and total fitted signal plus background is shown in red.\relax }}{113}{figure.caption.92}\protected@file@percent }
\newlabel{fig:invmass_lep}{{8.4}{113}{Diphoton invariant mass spectrum ($m_{\gamma \gamma }$) in the eight leptonic categories. The fitted continuum background is shown in blue the, total background including non-top Higgs processes is shown in green, and total fitted signal plus background is shown in red.\relax }{figure.caption.92}{}}
\citation{ttH}
\citation{ttHCMS}
\citation{CLs}
\@writefile{lot}{\contentsline {table}{\numberline {8.5}{\ignorespaces Relative QCD renormalization and factorization scale ($\mu _R$, $\mu _F$) and PDF uncertainties on the Standard Model $ttH$ sample.\relax }}{114}{table.caption.85}\protected@file@percent }
\newlabel{tab:qcdpdf_ttH}{{8.5}{114}{Relative QCD renormalization and factorization scale ($\mu _R$, $\mu _F$) and PDF uncertainties on the Standard Model $ttH$ sample.\relax }{table.caption.85}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.4.1}Observed and Expected $ttH$ Significance}{114}{subsection.8.4.1}\protected@file@percent }
\citation{PhysRevD.101.012002}
\@writefile{lot}{\contentsline {table}{\numberline {8.6}{\ignorespaces Relative QCD renormalization and factorization scale ($\mu _R$, $\mu _F$) and PDF uncertainties on the Standard Model $tWH$ Madgraph sample.\relax }}{115}{table.caption.86}\protected@file@percent }
\newlabel{tab:qcdpdf_tWH}{{8.6}{115}{Relative QCD renormalization and factorization scale ($\mu _R$, $\mu _F$) and PDF uncertainties on the Standard Model $tWH$ Madgraph sample.\relax }{table.caption.86}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.4.2}Upper Limit on $tH$}{115}{subsection.8.4.2}\protected@file@percent }
\citation{kappaFW}
\@writefile{lot}{\contentsline {table}{\numberline {8.7}{\ignorespaces Relative QCD renormalization and factorization scale ($\mu _R$, $\mu _F$) and PDF uncertainties on the Standard Model $tHjb$ Madgraph sample.\relax }}{116}{table.caption.87}\protected@file@percent }
\newlabel{tab:qcdpdf_tHjb}{{8.7}{116}{Relative QCD renormalization and factorization scale ($\mu _R$, $\mu _F$) and PDF uncertainties on the Standard Model $tHjb$ Madgraph sample.\relax }{table.caption.87}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {8.4.3}Limits on $\kappa _{t}$ and $\alpha $}{116}{subsection.8.4.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {8.4.3.1}2-D Constraint Using Previous Measurements}{116}{subsubsection.8.4.3.1}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {8.8}{\ignorespaces Relative effect [(Varied-Nominal)/Nominal] of the underlying event and parton showering (UEPS) theoretical uncertainties for $ttH$, $tHjb$, $tWH$ and $ggF$.\relax }}{117}{table.caption.88}\protected@file@percent }
\newlabel{tab:ueps}{{8.8}{117}{Relative effect [(Varied-Nominal)/Nominal] of the underlying event and parton showering (UEPS) theoretical uncertainties for $ttH$, $tHjb$, $tWH$ and $ggF$.\relax }{table.caption.88}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {8.4.3.2}1-D Constraint Using Previous Measurements}{117}{subsubsection.8.4.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {8.4.3.3}2-D Constraint Using $\kappa _{t}$ Parameterization}{117}{subsubsection.8.4.3.3}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {8.9}{\ignorespaces Generator uncertainties on $ggF$ (aMCnloPy8 $ggF$ - PowhegPy8 $ggF$)/(PowhegPy8 $ggF$) and $ttH$ (PowhegPy8 $ttH$ - aMCnloPy8 $ttH$)/(aMCnloPy8 $ttH$) in each analysis category. \relax }}{118}{table.caption.89}\protected@file@percent }
\newlabel{tab:mcgen}{{8.9}{118}{Generator uncertainties on $ggF$ (aMCnloPy8 $ggF$ - PowhegPy8 $ggF$)/(PowhegPy8 $ggF$) and $ttH$ (PowhegPy8 $ttH$ - aMCnloPy8 $ttH$)/(aMCnloPy8 $ttH$) in each analysis category. \relax }{table.caption.89}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {8.4.3.4}1-D Constraint Using $\kappa _{t}$ Parameterization}{118}{subsubsection.8.4.3.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {8.5}{\ignorespaces The weighted and unweighted sum of all twenty analysis categories. In the weighted plot, events are weighted by $\qopname \relax o{ln}(1+S/B)$, where $S$ and $B$ are calculated in the window $m_H\pm 3$ GeV.\relax }}{119}{figure.caption.93}\protected@file@percent }
\newlabel{fig:invmass_tot}{{8.5}{119}{The weighted and unweighted sum of all twenty analysis categories. In the weighted plot, events are weighted by $\ln (1+S/B)$, where $S$ and $B$ are calculated in the window $m_H\pm 3$ GeV.\relax }{figure.caption.93}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.6}{\ignorespaces The signal and background yields calculated in the smallest $m_{\gamma \gamma }$ window containing 90\% of fitted signal in each category. Signal is comprised of $ttH+tHjb+tWH$ and normalized to the Standard Model expectation (a) or the best fit value (b). The data events in this range are overlaid in black points. \relax }}{120}{figure.caption.95}\protected@file@percent }
\newlabel{fig:yields}{{8.6}{120}{The signal and background yields calculated in the smallest $m_{\gamma \gamma }$ window containing 90\% of fitted signal in each category. Signal is comprised of $ttH+tHjb+tWH$ and normalized to the Standard Model expectation (a) or the best fit value (b). The data events in this range are overlaid in black points. \relax }{figure.caption.95}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.7}{\ignorespaces Two-dimensional contour from the ATLAS Higgs coupling combination. The best fit value of $(\kappa _g,\kappa _\gamma )$ is shown with 1 and 2$\sigma $ contours. This is used as a constraint on $ggF$ and $H \rightarrow \gamma \gamma $ in the fit. \relax }}{121}{figure.caption.96}\protected@file@percent }
\newlabel{fig:combkgky}{{8.7}{121}{Two-dimensional contour from the ATLAS Higgs coupling combination. The best fit value of $(\kappa _g,\kappa _\gamma )$ is shown with 1 and 2$\sigma $ contours. This is used as a constraint on $ggF$ and $H \rightarrow \gamma \gamma $ in the fit. \relax }{figure.caption.96}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.8}{\ignorespaces Two-dimensional likelihood contour of $\kappa _t \qopname \relax o{cos}\alpha $ and $\kappa _t \qopname \relax o{sin}\alpha $, with $ggF$ and $H \rightarrow \gamma \gamma $ constrained by the existing Higgs coupling combination result, on (a) post-fit Asimov data and (b) observed data. \relax }}{121}{figure.caption.97}\protected@file@percent }
\newlabel{fig:s2:contours}{{8.8}{121}{Two-dimensional likelihood contour of $\kappa _t \cos \alpha $ and $\kappa _t \sin \alpha $, with $ggF$ and $H \rightarrow \gamma \gamma $ constrained by the existing Higgs coupling combination result, on (a) post-fit Asimov data and (b) observed data. \relax }{figure.caption.97}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.9}{\ignorespaces One-dimensional likelihood scan over possible values of the CP-mixing angle $\alpha $ on post-fit Asimov data (blue) and observed data (red). $ggF$ and $H \rightarrow \gamma \gamma $ are constrained by the previous Higgs coupling combination result. \relax }}{121}{figure.caption.98}\protected@file@percent }
\newlabel{fig:alphascan_expobs_scale}{{8.9}{121}{One-dimensional likelihood scan over possible values of the CP-mixing angle $\alpha $ on post-fit Asimov data (blue) and observed data (red). $ggF$ and $H \rightarrow \gamma \gamma $ are constrained by the previous Higgs coupling combination result. \relax }{figure.caption.98}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.10}{\ignorespaces Two-dimensional likelihood contour of $\kappa _t \qopname \relax o{cos}\alpha $ and $\kappa _t \qopname \relax o{sin}\alpha $, with $ggF$ and $H \rightarrow \gamma \gamma $ parameterized as function of $\kappa _t$ and $\alpha $, on (a) post-fit Asimov data and (b) observed data. \relax }}{122}{figure.caption.99}\protected@file@percent }
\newlabel{fig:s3:contours}{{8.10}{122}{Two-dimensional likelihood contour of $\kappa _t \cos \alpha $ and $\kappa _t \sin \alpha $, with $ggF$ and $H \rightarrow \gamma \gamma $ parameterized as function of $\kappa _t$ and $\alpha $, on (a) post-fit Asimov data and (b) observed data. \relax }{figure.caption.99}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8.11}{\ignorespaces One-dimensional likelihood scan over possible values of the CP mixing angle $\alpha $ on post-fit Asimov data (blue) and observed data (red). $ggF$ and $H \rightarrow \gamma \gamma $ are parameterized as functions of $\kappa _t$ and $\alpha $. \relax }}{122}{figure.caption.100}\protected@file@percent }
\newlabel{fig:alphascan_expobs_resolve}{{8.11}{122}{One-dimensional likelihood scan over possible values of the CP mixing angle $\alpha $ on post-fit Asimov data (blue) and observed data (red). $ggF$ and $H \rightarrow \gamma \gamma $ are parameterized as functions of $\kappa _t$ and $\alpha $. \relax }{figure.caption.100}{}}
\newlabel{RF1}{123}
\@writefile{lot}{\contentsline {table}{\numberline {8.10}{\ignorespaces Observed and expected $t\bar {t}H$ and $tH=tHjb+tWH$ yields per category, calculated in the smallest $m_{\gamma \gamma }$ window containing 90\% of the fitted signal. Expected yields assume $\kappa _{t}=1$.\relax }}{123}{table.caption.94}\protected@file@percent }
\newlabel{tab:yields}{{8.10}{123}{Observed and expected $t\bar {t}H$ and $tH=tHjb+tWH$ yields per category, calculated in the smallest $m_{\gamma \gamma }$ window containing 90\% of the fitted signal. Expected yields assume $\kappa _{t}=1$.\relax }{table.caption.94}{}}
\citation{YellowReport4}
\citation{couplings80fb}
\@writefile{toc}{\contentsline {chapter}{\numberline {9}Measurements of the Properties of Higgs Boson Production with $H \rightarrow \gamma \gamma $}{124}{chapter.9}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:couplings_chapter}{{9}{124}{Measurements of the Properties of Higgs Boson Production with $H \rightarrow \gamma \gamma $}{chapter.9}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.1}Categorization}{124}{section.9.1}\protected@file@percent }
\newlabel{sec:Categorization}{{9.1}{124}{Categorization}{section.9.1}{}}
\citation{LightGBM}
\citation{Cowan}
\citation{Powell}
\citation{Lindley}
\@writefile{lof}{\contentsline {figure}{\numberline {9.1}{\ignorespaces Overview of the categorization approach. The STXS names shown in the cartoon are those of the old STXS 1.0 scheme, but are closely related to the current STXS 1.2 categories.\relax }}{125}{figure.caption.101}\protected@file@percent }
\newlabel{fig:global_cat_sketch}{{9.1}{125}{Overview of the categorization approach. The STXS names shown in the cartoon are those of the old STXS 1.0 scheme, but are closely related to the current STXS 1.2 categories.\relax }{figure.caption.101}{}}
\newlabel{RF2}{126}
\@writefile{lot}{\contentsline {table}{\numberline {9.1}{\ignorespaces List of training variables used for the multiclass and binary BDTs.\relax }}{126}{table.caption.102}\protected@file@percent }
\newlabel{tab:design:trainingvariables}{{9.1}{126}{List of training variables used for the multiclass and binary BDTs.\relax }{table.caption.102}{}}
\newlabel{fig:design:BDT_ggH:multiclass}{{9.2a}{128}{\ggtoH \ (1-jet, $120 \le ~\ptH \le 200\,\GeV $)\caption@thelabel \relax }{figure.caption.103}{}}
\newlabel{sub@fig:design:BDT_ggH:multiclass}{{a}{128}{\ggtoH \ (1-jet, $120 \le ~\ptH \le 200\,\GeV $)\caption@thelabel \relax }{figure.caption.103}{}}
\newlabel{fig:design:BDT_VBF:multiclass}{{9.2b}{128}{\qqtoHqq \ ($\ge 2$-jets, $\mjj > 700\,\GeV $, $\ptHjj > 25\,\GeV $)\caption@thelabel \relax }{figure.caption.103}{}}
\newlabel{sub@fig:design:BDT_VBF:multiclass}{{b}{128}{\qqtoHqq \ ($\ge 2$-jets, $\mjj > 700\,\GeV $, $\ptHjj > 25\,\GeV $)\caption@thelabel \relax }{figure.caption.103}{}}
\newlabel{fig:design:BDT_VH:multiclass}{{9.2c}{128}{\qqtoHln \ ($75 \le \ptH < 150\,\GeV $)\caption@thelabel \relax }{figure.caption.103}{}}
\newlabel{sub@fig:design:BDT_VH:multiclass}{{c}{128}{\qqtoHln \ ($75 \le \ptH < 150\,\GeV $)\caption@thelabel \relax }{figure.caption.103}{}}
\newlabel{fig:design:BDT_ttH:multiclass}{{9.2d}{128}{\ttH \ ($60 \le \ptH < 120\,\GeV $) \caption@thelabel \relax }{figure.caption.103}{}}
\newlabel{sub@fig:design:BDT_ttH:multiclass}{{d}{128}{\ttH \ ($60 \le \ptH < 120\,\GeV $) \caption@thelabel \relax }{figure.caption.103}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.2}{\ignorespaces Multiclassifier output distributions for four STXS classes. In each plot, the multiclassifier output distribution is shown for events corresponding to the target STXS truth bin (solid) and events in other STXS truth bins (dashed). The target STXS bin is further broken down into the subset of events passing the multiclassifier selection (orange), and the subset of events that fail it (green).\relax }}{128}{figure.caption.103}\protected@file@percent }
\newlabel{fig:design:BDT_outputs_multiclass}{{9.2}{128}{Multiclassifier output distributions for four STXS classes. In each plot, the multiclassifier output distribution is shown for events corresponding to the target STXS truth bin (solid) and events in other STXS truth bins (dashed). The target STXS bin is further broken down into the subset of events passing the multiclassifier selection (orange), and the subset of events that fail it (green).\relax }{figure.caption.103}{}}
\newlabel{fig:design:BDT_ggH:binary}{{9.3a}{129}{\ggtoH \ (1-jet, $120 \le ~\ptH < 200\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\newlabel{sub@fig:design:BDT_ggH:binary}{{a}{129}{\ggtoH \ (1-jet, $120 \le ~\ptH < 200\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\newlabel{fig:design:BDT_VBF:binary}{{9.3b}{129}{\qqtoHqq \ ($\ge 2$-jets, $\mjj > 700\,\GeV $, $\ptHjj > 25\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\newlabel{sub@fig:design:BDT_VBF:binary}{{b}{129}{\qqtoHqq \ ($\ge 2$-jets, $\mjj > 700\,\GeV $, $\ptHjj > 25\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\newlabel{fig:design:BDT_VH:binary}{{9.3c}{129}{\qqtoHln \ ($75 \le \ptH < 150\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\newlabel{sub@fig:design:BDT_VH:binary}{{c}{129}{\qqtoHln \ ($75 \le \ptH < 150\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\newlabel{fig:design:BDT_ttH:binary}{{9.3d}{129}{\ttH \ ($60 \le \ptH < 120\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\newlabel{sub@fig:design:BDT_ttH:binary}{{d}{129}{\ttH \ ($60 \le \ptH < 120\,\GeV $)\caption@thelabel \relax }{figure.caption.104}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.3}{\ignorespaces Binary BDT distributions in four STXS classes. For each class, the binary BDT output distribution is shown for the target STXS truth bin (solid), other STXS truth bins (dashed), and background (dots) represented by the events in the diphoton mass sidebands (105 $<\nobreakspace {}m_{\gamma \gamma }\nobreakspace {}<\nobreakspace {}$ 120 GeV or 130 $<\nobreakspace {}m_{\gamma \gamma }\nobreakspace {}<\nobreakspace {}$ 160 GeV). The vertical lines indicate the boundaries of the analysis categories. \relax }}{129}{figure.caption.104}\protected@file@percent }
\newlabel{fig:design:BDT_outputs_binary}{{9.3}{129}{Binary BDT distributions in four STXS classes. For each class, the binary BDT output distribution is shown for the target STXS truth bin (solid), other STXS truth bins (dashed), and background (dots) represented by the events in the diphoton mass sidebands (105 $<~m_{\gamma \gamma }~<~$ 120 GeV or 130 $<~m_{\gamma \gamma }~<~$ 160 GeV). The vertical lines indicate the boundaries of the analysis categories. \relax }{figure.caption.104}{}}
\citation{Higgsmass}
\@writefile{lot}{\contentsline {table}{\numberline {9.2}{\ignorespaces For each category, values of the expected Higgs signal ($S$) and background ($B$) within the smallest mass window containing 90\% of signal events, as well as corresponding estimates of the signal purity $f = S/(S + B)$ and the expected significance $Z = \sqrt {2( (S+B) \qopname \relax o{log}(1 + S/B) - S)}$.\relax }}{130}{table.caption.105}\protected@file@percent }
\newlabel{tab:design:yields}{{9.2}{130}{For each category, values of the expected Higgs signal ($S$) and background ($B$) within the smallest mass window containing 90\% of signal events, as well as corresponding estimates of the signal purity $f = S/(S + B)$ and the expected significance $Z = \sqrt {2( (S+B) \log (1 + S/B) - S)}$.\relax }{table.caption.105}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.2}Signal and Background Modelling}{130}{section.9.2}\protected@file@percent }
\newlabel{sec:SignalBackground}{{9.2}{130}{Signal and Background Modelling}{section.9.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.4}{\ignorespaces The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ensuremath {gg \to H}\ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }}{131}{figure.caption.106}\protected@file@percent }
\newlabel{fig:yields_1}{{9.4}{131}{The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ggtoH \ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }{figure.caption.106}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.5}{\ignorespaces The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ensuremath {qq \to Hqq}\ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }}{132}{figure.caption.107}\protected@file@percent }
\newlabel{fig:yields_2}{{9.5}{132}{The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \qqtoHqq \ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }{figure.caption.107}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.3}Systematic Uncertainties}{132}{section.9.3}\protected@file@percent }
\newlabel{sec:Systematics}{{9.3}{132}{Systematic Uncertainties}{section.9.3}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.6}{\ignorespaces The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ensuremath {qq \to H\ell \ell }\ and \ensuremath {qq \to H\ell \nu }\ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }}{133}{figure.caption.108}\protected@file@percent }
\newlabel{fig:yields_3}{{9.6}{133}{The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \qqtoHll \ and \qqtoHln \ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }{figure.caption.108}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.3.1}Theory Systematics}{133}{subsection.9.3.1}\protected@file@percent }
\newlabel{subsec:Theorysysts}{{9.3.1}{133}{Theory Systematics}{subsection.9.3.1}{}}
\citation{PDF4LHC}
\@writefile{lof}{\contentsline {figure}{\numberline {9.7}{\ignorespaces The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ensuremath {\mathrm {t\bar {t}H}}\xspace \tmspace +\thinmuskip {.1667em} $tWH$, and $tHjb$ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }}{134}{figure.caption.109}\protected@file@percent }
\newlabel{fig:yields_4}{{9.7}{134}{The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ttH \, $tWH$, and $tHjb$ categories and truth bins. Entries with a value below $1\%$ are omitted.\relax }{figure.caption.109}{}}
\citation{HZZ4l}
\citation{ttbb}
\citation{Wb}
\citation{Zb}
\@writefile{lot}{\contentsline {table}{\numberline {9.3}{\ignorespaces The choice of background function and the size of spurious signal uncertainties in the mass range 120 GeV to 130 GeV. $S$ is the maximum fitted spurious signal, $\delta S$ is its associated uncertainty, and $S_{ref}$ is the expected size of Higgs signal events. The $\zeta $ is the maximum fitted spurious signal yield when expanded to accomodate $2\sigma $ statistical fluctuations of the background templates. The ``*" in the function name means the function decision is made using the Wald Test because there are fewer than 100 events in the sidebands. \relax }}{135}{table.caption.112}\protected@file@percent }
\newlabel{tab:spurious_sig}{{9.3}{135}{The choice of background function and the size of spurious signal uncertainties in the mass range 120 GeV to 130 GeV. $S$ is the maximum fitted spurious signal, $\delta S$ is its associated uncertainty, and $S_{ref}$ is the expected size of Higgs signal events. The $\zeta $ is the maximum fitted spurious signal yield when expanded to accomodate $2\sigma $ statistical fluctuations of the background templates. The ``*" in the function name means the function decision is made using the Wald Test because there are fewer than 100 events in the sidebands. \relax }{table.caption.112}{}}
\@writefile{lot}{\contentsline {table}{\numberline {9.4}{\ignorespaces The choice of background function and the size of spurious signal uncertainties in the mass range 120 GeV to 130 GeV. $S$ is the maximum fitted spurious signal, $\delta S$ is its associated uncertainty, and $S_{ref}$ is the expected size of Higgs signal events. The $\zeta $ is the maximum fitted spurious signal yield when expanded to accomodate $2\sigma $ statistical fluctuations of the background templates. The ``*" in the function name means the function decision is made using the Wald Test because there are fewer than 100 events in the sidebands. \relax }}{136}{table.caption.113}\protected@file@percent }
\newlabel{tab:spurious_sig2}{{9.4}{136}{The choice of background function and the size of spurious signal uncertainties in the mass range 120 GeV to 130 GeV. $S$ is the maximum fitted spurious signal, $\delta S$ is its associated uncertainty, and $S_{ref}$ is the expected size of Higgs signal events. The $\zeta $ is the maximum fitted spurious signal yield when expanded to accomodate $2\sigma $ statistical fluctuations of the background templates. The ``*" in the function name means the function decision is made using the Wald Test because there are fewer than 100 events in the sidebands. \relax }{table.caption.113}{}}
\citation{coups127}
\citation{jetuncs4}
\citation{CERN-EP-2019-145}
\citation{CERN-EP-2016-033}
\citation{triggerperformance}
\citation{LUCID}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.3.2}Experimental Systematics}{137}{subsection.9.3.2}\protected@file@percent }
\newlabel{subsec:Experimentalsysts}{{9.3.2}{137}{Experimental Systematics}{subsection.9.3.2}{}}
\@writefile{lot}{\contentsline {table}{\numberline {9.5}{\ignorespaces The impact of groups of systematic uncertainties on the total error on the measured cross section times branching ratio ($\Delta \sigma $), given as a fraction of the total measured cross section ($\sigma $).\relax }}{138}{table.caption.115}\protected@file@percent }
\newlabel{tab:result:systematic}{{9.5}{138}{The impact of groups of systematic uncertainties on the total error on the measured cross section times branching ratio ($\Delta \sigma $), given as a fraction of the total measured cross section ($\sigma $).\relax }{table.caption.115}{}}
\@writefile{toc}{\contentsline {section}{\numberline {9.4}Results}{138}{section.9.4}\protected@file@percent }
\newlabel{sec:Results}{{9.4}{138}{Results}{section.9.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.4.1}Cross-Sections}{138}{subsection.9.4.1}\protected@file@percent }
\newlabel{sec:Xsecs}{{9.4.1}{138}{Cross-Sections}{subsection.9.4.1}{}}
\citation{CLs}
\@writefile{toc}{\contentsline {subsection}{\numberline {9.4.2}STXS}{139}{subsection.9.4.2}\protected@file@percent }
\newlabel{sec:STXS}{{9.4.2}{139}{STXS}{subsection.9.4.2}{}}
\@writefile{lot}{\contentsline {table}{\numberline {9.6}{\ignorespaces Best-fit values and uncertainties for $\sigma \times Br_{\gamma \gamma }$ in each of the five major production modes. The total uncertainties are decomposed into statistical and systematic components. Expected values are also shown for the cross-section of each process.\relax }}{140}{table.caption.119}\protected@file@percent }
\newlabel{tab:results:prodXS}{{9.6}{140}{Best-fit values and uncertainties for $\sigma \times Br_{\gamma \gamma }$ in each of the five major production modes. The total uncertainties are decomposed into statistical and systematic components. Expected values are also shown for the cross-section of each process.\relax }{table.caption.119}{}}
\@writefile{lot}{\contentsline {table}{\numberline {9.7}{\ignorespaces Best-fit values and uncertainties for the cross-section times \ensuremath {H\to \gamma \gamma }\xspace \ branching ratio $(\sigma _i \times Br_{\gamma \gamma })$ in each STXS region. The total uncertainties are decomposed into statistical and systematic components. SM predictions are also shown for each quantity.\relax }}{141}{table.caption.121}\protected@file@percent }
\newlabel{tab:results:STXS}{{9.7}{141}{Best-fit values and uncertainties for the cross-section times \Hyy \ branching ratio $(\sigma _i \times Br_{\gamma \gamma })$ in each STXS region. The total uncertainties are decomposed into statistical and systematic components. SM predictions are also shown for each quantity.\relax }{table.caption.121}{}}
\newlabel{RF3}{142}
\@writefile{lof}{\contentsline {figure}{\numberline {9.8}{\ignorespaces The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ensuremath {qq \to Hqq}\ STXS truth bins and \ensuremath {gg \to H}\ analysis categories. Entries with a value below $1\%$ are omitted.\relax }}{142}{figure.caption.110}\protected@file@percent }
\newlabel{fig:yields_5}{{9.8}{142}{The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \qqtoHqq \ STXS truth bins and \ggtoH \ analysis categories. Entries with a value below $1\%$ are omitted.\relax }{figure.caption.110}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.9}{\ignorespaces The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ensuremath {gg \to H}\ STXS truth bins and \ensuremath {qq \to Hqq}\ analysis categories. Entries with a value below $1\%$ are omitted.\relax }}{143}{figure.caption.111}\protected@file@percent }
\newlabel{fig:yields_6}{{9.9}{143}{The correspondence between analysis category and STXS truth bins, in terms of the percentage contribution of a given STXS truth bin (y-axis) to the Higgs signal yield in a given analysis category (x-axis) for \ggtoH \ STXS truth bins and \qqtoHqq \ analysis categories. Entries with a value below $1\%$ are omitted.\relax }{figure.caption.111}{}}
\newlabel{fig:design:bkg_ggH}{{9.10a}{144}{\ggtoH \ (1-jet, $\ptH < 60\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\newlabel{sub@fig:design:bkg_ggH}{{a}{144}{\ggtoH \ (1-jet, $\ptH < 60\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\newlabel{fig:design:bkg_VBF}{{9.10b}{144}{\qqtoHqq \ ($\ge 2$-jets, $350 \le \mjj < 700\,\GeV $, $\ptH < 200\,\GeV $, $\ptHjj < 25\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\newlabel{sub@fig:design:bkg_VBF}{{b}{144}{\qqtoHqq \ ($\ge 2$-jets, $350 \le \mjj < 700\,\GeV $, $\ptH < 200\,\GeV $, $\ptHjj < 25\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\newlabel{fig:design:bkg_VH}{{9.10c}{144}{\qqtoHln \ ($75 \le \ptH < 150\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\newlabel{sub@fig:design:bkg_VH}{{c}{144}{\qqtoHln \ ($75 \le \ptH < 150\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\newlabel{fig:design:bkg_ttH}{{9.10d}{144}{\ttH \ ($60 \le \ptH < 120\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\newlabel{sub@fig:design:bkg_ttH}{{d}{144}{\ttH \ ($60 \le \ptH < 120\,\GeV $)\caption@thelabel \relax }{figure.caption.114}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.10}{\ignorespaces Distribution of the diphoton invariant mass $m_{\gamma \gamma }$ in four STXS categories. Monte Carlo background templates are shown in histogram, and data is shown using black points. The signal region, $120 < m_{\gamma \gamma } < 130 \GeV $, is excluded in data. In categories\nobreakspace {}\ref {fig:design:bkg_ggH} and\nobreakspace {}\ref {fig:design:bkg_VBF}, the $\gamma \gamma $, $\gamma j$ (green) and $jj$ (magenta) components of the background used to build the template are shown stacked on top of each other. \relax }}{144}{figure.caption.114}\protected@file@percent }
\newlabel{fig:design:bkg}{{9.10}{144}{Distribution of the diphoton invariant mass $m_{\gamma \gamma }$ in four STXS categories. Monte Carlo background templates are shown in histogram, and data is shown using black points. The signal region, $120 < m_{\gamma \gamma } < 130 \GeV $, is excluded in data. In categories~\ref {fig:design:bkg_ggH} and~\ref {fig:design:bkg_VBF}, the $\gamma \gamma $, $\gamma j$ (green) and $jj$ (magenta) components of the background used to build the template are shown stacked on top of each other. \relax }{figure.caption.114}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.11}{\ignorespaces The inclusive diphoton invariant mass distribution of events from all analysis categories. The events in each category are weighted by $\qopname \relax o{ln}(1+S/B)$, where $S$ and $B$ are the expected signal and background yields in this category within the smallest $m_{\gamma \gamma }$ window containing 90\% of the signal events. The weighted sum of the signal plus background fits is represented by the solid line, while the blue dotted line indicates the weighted sum of the background functional forms. \relax }}{145}{figure.caption.116}\protected@file@percent }
\newlabel{fig:result:inclusivemgg}{{9.11}{145}{The inclusive diphoton invariant mass distribution of events from all analysis categories. The events in each category are weighted by $\ln (1+S/B)$, where $S$ and $B$ are the expected signal and background yields in this category within the smallest $m_{\gamma \gamma }$ window containing 90\% of the signal events. The weighted sum of the signal plus background fits is represented by the solid line, while the blue dotted line indicates the weighted sum of the background functional forms. \relax }{figure.caption.116}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.12}{\ignorespaces Combined diphoton invariant mass distributions for the five-production-mode fit. The events in each category are weighted by $\qopname \relax o{ln}(1+S/B)$, where $S$ and $B$ are the expected signal and background yields in this category within the smallest $m_{\gamma \gamma }$ window containing 90\% of the signal events. The weighted sum of the signal plus background fits is represented by the solid line, while the blue dotted line represents the weighted sum of the background functional forms. Only Higgs boson events from the targeted production processes in each category are considered as signal events in these plots; Higgs boson events from other processes are treated as part of the background.\relax }}{146}{figure.caption.117}\protected@file@percent }
\newlabel{fig:results:prodXS_spectra}{{9.12}{146}{Combined diphoton invariant mass distributions for the five-production-mode fit. The events in each category are weighted by $\ln (1+S/B)$, where $S$ and $B$ are the expected signal and background yields in this category within the smallest $m_{\gamma \gamma }$ window containing 90\% of the signal events. The weighted sum of the signal plus background fits is represented by the solid line, while the blue dotted line represents the weighted sum of the background functional forms. Only Higgs boson events from the targeted production processes in each category are considered as signal events in these plots; Higgs boson events from other processes are treated as part of the background.\relax }{figure.caption.117}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.13}{\ignorespaces Measured cross sections times branching fraction for \ensuremath {\mathrm {ggF}}\xspace +\nobreakspace {}\ensuremath {\mathrm {b\bar {b}H}}\xspace , \ensuremath {\mathrm {VBF}}\xspace , \ensuremath {\mathrm {VH}}\xspace \ and \ensuremath {\mathrm {t\bar {t}H}}\xspace +\nobreakspace {}\ensuremath {\mathrm {tH}}\xspace \ production. The values are obtained from a simultaneous fit to all categories. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical uncertainties, while the gray bands show the theory uncertainties. \relax }}{147}{figure.caption.118}\protected@file@percent }
\newlabel{fig:results:prodXS}{{9.13}{147}{Measured cross sections times branching fraction for \ggF +~\bbH , \VBF , \VH \ and \ttH +~\tH \ production. The values are obtained from a simultaneous fit to all categories. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical uncertainties, while the gray bands show the theory uncertainties. \relax }{figure.caption.118}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.14}{\ignorespaces Correlation matrix for the five-production-mode fit. \relax }}{148}{figure.caption.120}\protected@file@percent }
\newlabel{fig:results:prodXS_corr}{{9.14}{148}{Correlation matrix for the five-production-mode fit. \relax }{figure.caption.120}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.15}{\ignorespaces Measured cross sections times branching fraction for the cross sections in each analysis category. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical uncertainties, respectively, while the gray bands show the theory uncertainties.\relax }}{149}{figure.caption.122}\protected@file@percent }
\newlabel{fig:results:STXS}{{9.15}{149}{Measured cross sections times branching fraction for the cross sections in each analysis category. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical uncertainties, respectively, while the gray bands show the theory uncertainties.\relax }{figure.caption.122}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.16}{\ignorespaces Correlation matrix for the full STXS measurement. \relax }}{150}{figure.caption.123}\protected@file@percent }
\newlabel{fig:results:STXS_corr}{{9.16}{150}{Correlation matrix for the full STXS measurement. \relax }{figure.caption.123}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.17}{\ignorespaces Event yields in the diphoton mass range containing $90\%$ of the signal events for all 88 categories. In each category, the fitted targeted STXS-bin signal yield is shown in red, the yield of other Higgs boson processes is shown in green, and the fitted continuum background is shown in blue. The 27 STXS cross-sections are parameters of interest profiled in the fit. The vertical lines separate the \ensuremath {\mathrm {ggF}}\xspace , \ensuremath {\mathrm {VBF}}\xspace , \ensuremath {\mathrm {WH}}\xspace , \ensuremath {\mathrm {ZH}}\xspace , and \ensuremath {\mathrm {t\bar {t}H}}\xspace \ and \ensuremath {\mathrm {tH}}\xspace \ categories. In the top panel, the signal and backgrounds are stacked, while in the bottom panel, the background is subtracted from the data yield and only the fitted and expected signal is shown.\relax }}{151}{figure.caption.124}\protected@file@percent }
\newlabel{fig:STXSfit}{{9.17}{151}{Event yields in the diphoton mass range containing $90\%$ of the signal events for all 88 categories. In each category, the fitted targeted STXS-bin signal yield is shown in red, the yield of other Higgs boson processes is shown in green, and the fitted continuum background is shown in blue. The 27 STXS cross-sections are parameters of interest profiled in the fit. The vertical lines separate the \ggF , \VBF , \WH , \ZH , and \ttH \ and \tH \ categories. In the top panel, the signal and backgrounds are stacked, while in the bottom panel, the background is subtracted from the data yield and only the fitted and expected signal is shown.\relax }{figure.caption.124}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.18}{\ignorespaces The subset of the correlation matrix of the STXS measurements shown in Figure\nobreakspace {}\ref {fig:results:STXS_corr} corresponding to the \ensuremath {gg \to H}\ and $qq^\prime \to H qq^\prime $ STXS regions.\relax }}{152}{figure.caption.125}\protected@file@percent }
\newlabel{fig:correlationggFqqHqq}{{9.18}{152}{The subset of the correlation matrix of the STXS measurements shown in Figure~\ref {fig:results:STXS_corr} corresponding to the \ggtoH \ and $qq^\prime \to H qq^\prime $ STXS regions.\relax }{figure.caption.125}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.19}{\ignorespaces The subset of the correlation matrix of the STXS measurements shown in Figure\nobreakspace {}\ref {fig:results:STXS_corr} corresponding to the \ensuremath {qq \to H\ell \ell }, \ensuremath {qq \to H\ell \nu }, \ensuremath {\mathrm {t\bar {t}H}}\xspace , $tWH$, and $tHjb$ STXS regions.\relax }}{153}{figure.caption.126}\protected@file@percent }
\newlabel{fig:correlationVHttH}{{9.19}{153}{The subset of the correlation matrix of the STXS measurements shown in Figure~\ref {fig:results:STXS_corr} corresponding to the \qqtoHll , \qqtoHln , \ttH , $tWH$, and $tHjb$ STXS regions.\relax }{figure.caption.126}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {10}Conclusion}{154}{chapter.10}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{chap:conclusion}{{10}{154}{Conclusion}{chapter.10}{}}
\citation{XSecs}
\citation{LogCox}
\citation{KLFitter}
\citation{Minuit}
\citation{BAT}
\@writefile{toc}{\contentsline {chapter}{Appendices}{157}{section*.127}\protected@file@percent }
\@writefile{toc}{\setcounter {tocdepth}{1}}
\@writefile{loa}{\contentsline {chapter}{\numberline {A}Alternative Top Reconstruction with the KLFitter}{157}{section*.128}\protected@file@percent }
\@writefile{lof}{\addvspace {8pt}}
\@writefile{lot}{\addvspace {8pt}}
\@writefile{lom}{\addvspace {8pt}}
\@writefile{lop}{\addvspace {8pt}}
\@writefile{loi}{\addvspace {8pt}}
\newlabel{app:KLFitter}{{A}{157}{Conclusion}{section*.128}{}}
\@writefile{toc}{\contentsline {section}{\numberline {A.1}The KLFitter}{157}{section.A.1}\protected@file@percent }
\newlabel{sec:KLFitter}{{A.1}{157}{The KLFitter}{section.A.1}{}}
\citation{PDG}
\@writefile{lof}{\contentsline {figure}{\numberline {A.1}{\ignorespaces Reconstructed top-mass and top-mass resolution of the KLFitter (using the "unfixed" top-mass setting to illustrate performance).\relax }}{158}{figure.caption.129}\protected@file@percent }
\newlabel{fig:sel_topReco_retrain}{{A.1}{158}{Reconstructed top-mass and top-mass resolution of the KLFitter (using the "unfixed" top-mass setting to illustrate performance).\relax }{figure.caption.129}{}}
\@writefile{toc}{\contentsline {section}{\numberline {A.2}Comparison}{158}{section.A.2}\protected@file@percent }
\newlabel{sec:comparison}{{A.2}{158}{Comparison}{section.A.2}{}}
\@writefile{lot}{\contentsline {table}{\numberline {A.1}{\ignorespaces Comparison of KLFitter and top-reconstruction BDT.\relax }}{158}{table.caption.130}\protected@file@percent }
\newlabel{KLFitterTable}{{A.1}{158}{Comparison of KLFitter and top-reconstruction BDT.\relax }{table.caption.130}{}}
\citation{TMVA}
\citation{thetastar}
\@writefile{loa}{\contentsline {chapter}{\numberline {B}CP-BDT Studies with the Toolkit for Multivariate Analysis}{159}{section*.131}\protected@file@percent }
\@writefile{lof}{\addvspace {8pt}}
\@writefile{lot}{\addvspace {8pt}}
\@writefile{lom}{\addvspace {8pt}}
\@writefile{lop}{\addvspace {8pt}}
\@writefile{loi}{\addvspace {8pt}}
\newlabel{app:TMVABDT}{{B}{159}{Comparison}{section*.131}{}}
\@writefile{toc}{\contentsline {section}{\numberline {B.1}Additional CP BDT Studies with TMVA}{159}{section.B.1}\protected@file@percent }
\newlabel{sec:TMVABDTStudies}{{B.1}{159}{Additional CP BDT Studies with TMVA}{section.B.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {B.1.1}Four-Vector BDT, ttH only}{159}{subsection.B.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {B.1.1.1}Hadronic Channel}{159}{subsubsection.B.1.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {B.1}{\ignorespaces Training variable correlations for events passing hadronic pre-selection.\relax }}{160}{figure.caption.132}\protected@file@percent }
\newlabel{fig:hadcorr4vec}{{B.1}{160}{Training variable correlations for events passing hadronic pre-selection.\relax }{figure.caption.132}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.2}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\qopname \relax o{cos}$($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, and subleading photon $\eta $.\relax }}{161}{figure.caption.133}\protected@file@percent }
\newlabel{fig:had4vecvbls1}{{B.2}{161}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\cos $($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, and subleading photon $\eta $.\relax }{figure.caption.133}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.3}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of $E_T^{miss}$, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), invariant mass of all jets in the event, minimum $\Delta $R between a photon and a jet, second-smallest $\Delta $R between a photon and a jet, $p_{T}$ of highest b-tag scoring jet.\relax }}{161}{figure.caption.134}\protected@file@percent }
\newlabel{fig:had4vecvbls2}{{B.3}{161}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of $E_T^{miss}$, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), invariant mass of all jets in the event, minimum $\Delta $R between a photon and a jet, second-smallest $\Delta $R between a photon and a jet, $p_{T}$ of highest b-tag scoring jet.\relax }{figure.caption.134}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.4}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet, $p_{T}$ of second-highest b-tag scoring jet, $\eta $ of second-highest b-tag scoring jet, $\phi $ of second-highest btag-scoring jet (measured with respect to the Higgs candidate).\relax }}{162}{figure.caption.135}\protected@file@percent }
\newlabel{fig:had4vecvbls3}{{B.4}{162}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet, $p_{T}$ of second-highest b-tag scoring jet, $\eta $ of second-highest b-tag scoring jet, $\phi $ of second-highest btag-scoring jet (measured with respect to the Higgs candidate).\relax }{figure.caption.135}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.5}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: pseudo-continuous b-tag score of second-highest btag-scoring jet, $p_{T}$ of third-highest b-tag scoring jet, $\eta $ of third-highest b-tag scoring jet, $\phi $ of third-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of third-highest btag-scoring jet, $p_{T}$ of fourth-highest b-tag scoring jet.\relax }}{162}{figure.caption.136}\protected@file@percent }
\newlabel{fig:had4vecvbls4}{{B.5}{162}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: pseudo-continuous b-tag score of second-highest btag-scoring jet, $p_{T}$ of third-highest b-tag scoring jet, $\eta $ of third-highest b-tag scoring jet, $\phi $ of third-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of third-highest btag-scoring jet, $p_{T}$ of fourth-highest b-tag scoring jet.\relax }{figure.caption.136}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.6}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of fourth-highest b-tag scoring jet, $\phi $ of fourth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of fourth-highest btag-scoring jet, $p_{T}$ of fifth-highest b-tag scoring jet, $\eta $ of fifth-highest b-tag scoring jet, $\phi $ of fifth-highest btag-scoring jet (measured with respect to the Higgs candidate)\relax }}{163}{figure.caption.137}\protected@file@percent }
\newlabel{fig:had4vecvbls5}{{B.6}{163}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of fourth-highest b-tag scoring jet, $\phi $ of fourth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of fourth-highest btag-scoring jet, $p_{T}$ of fifth-highest b-tag scoring jet, $\eta $ of fifth-highest b-tag scoring jet, $\phi $ of fifth-highest btag-scoring jet (measured with respect to the Higgs candidate)\relax }{figure.caption.137}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.7}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Pseudo-continuous b-tag score of fifth-highest btag-scoring jet, $p_{T}$ of sixth-highest b-tag scoring jet, $\eta $ of sixth-highest b-tag scoring jet, $\phi $ of sixth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of sixth-highest btag-scoring jet.\relax }}{163}{figure.caption.138}\protected@file@percent }
\newlabel{fig:had4vecvbls6}{{B.7}{163}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Pseudo-continuous b-tag score of fifth-highest btag-scoring jet, $p_{T}$ of sixth-highest b-tag scoring jet, $\eta $ of sixth-highest b-tag scoring jet, $\phi $ of sixth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of sixth-highest btag-scoring jet.\relax }{figure.caption.138}{}}
\citation{thetastar}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {B.1.1.2}Leptonic channel}{164}{subsubsection.B.1.1.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {B.8}{\ignorespaces Training variable correlations for events passing leptonic pre-selection.\relax }}{165}{figure.caption.139}\protected@file@percent }
\newlabel{fig:lepcorr4vec}{{B.8}{165}{Training variable correlations for events passing leptonic pre-selection.\relax }{figure.caption.139}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.9}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\qopname \relax o{cos}$($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, and subleading photon $\eta $.\relax }}{165}{figure.caption.140}\protected@file@percent }
\newlabel{fig:lep4vecvbls1}{{B.9}{165}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\cos $($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, and subleading photon $\eta $.\relax }{figure.caption.140}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.10}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of $E_T^{miss}$, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), invariant mass of all jets in the event, minimum $\Delta $R between a photon and a jet, second-smallest $\Delta $R between a photon and a jet, $p_{T}$ of highest b-tag scoring jet.\relax }}{166}{figure.caption.141}\protected@file@percent }
\newlabel{fig:lep4vecvbls2}{{B.10}{166}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of $E_T^{miss}$, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), invariant mass of all jets in the event, minimum $\Delta $R between a photon and a jet, second-smallest $\Delta $R between a photon and a jet, $p_{T}$ of highest b-tag scoring jet.\relax }{figure.caption.141}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.11}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet, $p_{T}$ of second-highest b-tag scoring jet, $\eta $ of second-highest b-tag scoring jet, $\phi $ of second-highest btag-scoring jet (measured with respect to the Higgs candidate).\relax }}{166}{figure.caption.142}\protected@file@percent }
\newlabel{fig:lep4vecvbls3}{{B.11}{166}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet, $p_{T}$ of second-highest b-tag scoring jet, $\eta $ of second-highest b-tag scoring jet, $\phi $ of second-highest btag-scoring jet (measured with respect to the Higgs candidate).\relax }{figure.caption.142}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.12}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: pseudo-continuous b-tag score of second-highest btag-scoring jet, $p_{T}$ of third-highest b-tag scoring jet, $\eta $ of third-highest b-tag scoring jet, $\phi $ of third-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of third-highest btag-scoring jet, $p_{T}$ of fourth-highest b-tag scoring jet.\relax }}{167}{figure.caption.143}\protected@file@percent }
\newlabel{fig:lep4vecvbls4}{{B.12}{167}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: pseudo-continuous b-tag score of second-highest btag-scoring jet, $p_{T}$ of third-highest b-tag scoring jet, $\eta $ of third-highest b-tag scoring jet, $\phi $ of third-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of third-highest btag-scoring jet, $p_{T}$ of fourth-highest b-tag scoring jet.\relax }{figure.caption.143}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.13}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of fourth-highest btag-scoring jet, $\phi $ of fourth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of fourth-highest btag-scoring jet, $p_{T}$ of leading lepton, $\eta $ of leading lepton, $\phi $ of leading lepton (measured with respect to the Higgs candidate).\relax }}{167}{figure.caption.144}\protected@file@percent }
\newlabel{fig:lep4vecvbls5}{{B.13}{167}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of fourth-highest btag-scoring jet, $\phi $ of fourth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of fourth-highest btag-scoring jet, $p_{T}$ of leading lepton, $\eta $ of leading lepton, $\phi $ of leading lepton (measured with respect to the Higgs candidate).\relax }{figure.caption.144}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.14}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right: $p_{T}$ of sub-leading lepton, $\eta $ of sub-leading lepton, and $\phi $ of sub-leading lepton (measured with respect to Higgs candidate).\relax }}{168}{figure.caption.145}\protected@file@percent }
\newlabel{fig:lep4vecvbls6}{{B.14}{168}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right: $p_{T}$ of sub-leading lepton, $\eta $ of sub-leading lepton, and $\phi $ of sub-leading lepton (measured with respect to Higgs candidate).\relax }{figure.caption.145}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {B.1.1.3}Results}{169}{subsubsection.B.1.1.3}\protected@file@percent }
\@writefile{lot}{\contentsline {table}{\numberline {B.1}{\ignorespaces Figures of merit for the fifteen-category CP BDT categorization. The right-hand column shows that an alternative setup using four-vector training variables in the CP BDT achieves similar sensitivity.\relax }}{170}{table.caption.146}\protected@file@percent }
\newlabel{tab:appsigs}{{B.1}{170}{Figures of merit for the fifteen-category CP BDT categorization. The right-hand column shows that an alternative setup using four-vector training variables in the CP BDT achieves similar sensitivity.\relax }{table.caption.146}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.15}{\ignorespaces (Left) Event yields in the CP categories at 139 fb$^{-1}$, with optimized A-boundaries drawn in the BDT score, using the Nominal CP-BDT. Shown separately for CP even $ttH$ (top) and CP odd $ttH$ (bottom). (Right) purity of the Higgs yield in each category for CP even $ttH$ (top) and CP odd $ttH$ (bottom).\relax }}{171}{figure.caption.147}\protected@file@percent }
\newlabel{fig:nominalBs}{{B.15}{171}{(Left) Event yields in the CP categories at 139 fb$^{-1}$, with optimized A-boundaries drawn in the BDT score, using the Nominal CP-BDT. Shown separately for CP even $ttH$ (top) and CP odd $ttH$ (bottom). (Right) purity of the Higgs yield in each category for CP even $ttH$ (top) and CP odd $ttH$ (bottom).\relax }{figure.caption.147}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.16}{\ignorespaces (Left) Event yields in the CP categories at 139 fb$^{-1}$, with optimized A-boundaries drawn in the BDT score, using the 4-vector CP-BDT. Shown separately for CP even $ttH$ (top) and CP odd $ttH$ (bottom). (Right) purity of the Higgs yield in each category for CP even $ttH$ (top) and CP odd $ttH$ (bottom).\relax }}{172}{figure.caption.148}\protected@file@percent }
\newlabel{fig:4vecBs}{{B.16}{172}{(Left) Event yields in the CP categories at 139 fb$^{-1}$, with optimized A-boundaries drawn in the BDT score, using the 4-vector CP-BDT. Shown separately for CP even $ttH$ (top) and CP odd $ttH$ (bottom). (Right) purity of the Higgs yield in each category for CP even $ttH$ (top) and CP odd $ttH$ (bottom).\relax }{figure.caption.148}{}}
\citation{Ellis}
\@writefile{toc}{\contentsline {subsection}{\numberline {B.1.2}Dilep/Semilep BDT, ttH Only}{173}{subsection.B.1.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{\numberline {B.1.2.1}Dileptonic BDT}{173}{subsubsection.B.1.2.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {B.17}{\ignorespaces Training variable correlations for events passing dileptonic pre-selection.\relax }}{174}{figure.caption.149}\protected@file@percent }
\newlabel{fig:dilepcorr4vec}{{B.17}{174}{Training variable correlations for events passing dileptonic pre-selection.\relax }{figure.caption.149}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.18}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\qopname \relax o{cos}$($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, subleading photon $\eta $.\relax }}{174}{figure.caption.150}\protected@file@percent }
\newlabel{fig:dilep4vecvbls1}{{B.18}{174}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\cos $($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, subleading photon $\eta $.\relax }{figure.caption.150}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.19}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of $E_T^{miss}$, summed invariant mass of all jets in the event, $\Delta $R between the two leptons present in the event, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), minimum $\Delta $R between a photon and a jet, $p_{T}$ of highest b-tag scoring jet\relax }}{175}{figure.caption.151}\protected@file@percent }
\newlabel{fig:dilep4vecvbls2}{{B.19}{175}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of $E_T^{miss}$, summed invariant mass of all jets in the event, $\Delta $R between the two leptons present in the event, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), minimum $\Delta $R between a photon and a jet, $p_{T}$ of highest b-tag scoring jet\relax }{figure.caption.151}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.20}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet, $p_{T}$ of leading lepton, $\eta $ of leading lepton, $\phi $ of leading lepton (measured with respect to the Higgs candidate)\relax }}{175}{figure.caption.152}\protected@file@percent }
\newlabel{fig:dilep4vecvbls3}{{B.20}{175}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet, $p_{T}$ of leading lepton, $\eta $ of leading lepton, $\phi $ of leading lepton (measured with respect to the Higgs candidate)\relax }{figure.caption.152}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.21}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $p_{T}$ of subleading lepton, $\eta $ of subleading lepton, $\phi $ of subleading lepton (measured with respect to the Higgs candidate)\relax }}{176}{figure.caption.153}\protected@file@percent }
\newlabel{fig:dilep4vecvbls4}{{B.21}{176}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $p_{T}$ of subleading lepton, $\eta $ of subleading lepton, $\phi $ of subleading lepton (measured with respect to the Higgs candidate)\relax }{figure.caption.153}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {B.1.2.2}Semileptonic BDT}{176}{subsubsection.B.1.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {B.1.3}Variable Optimization Studies, Nominal BDT, ttH and tH}{176}{subsection.B.1.3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {B.22}{\ignorespaces Training variable correlations for events passing semileptonic pre-selection.\relax }}{177}{figure.caption.154}\protected@file@percent }
\newlabel{fig:semilepcorr4vec}{{B.22}{177}{Training variable correlations for events passing semileptonic pre-selection.\relax }{figure.caption.154}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.23}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\qopname \relax o{cos}$($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, subleading photon $\eta $.\relax }}{177}{figure.caption.155}\protected@file@percent }
\newlabel{fig:semilep4vecvbls1}{{B.23}{177}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Higgs candidate $p_{T}$ (scaled by mass), $\cos $($\theta ^{*}$), leading photon $p_{T}$, leading photon $\eta $, subleading photon $p_{T}$, subleading photon $\eta $.\relax }{figure.caption.155}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.24}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of the event $E_T^{miss}$, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), $p_{T}$ of highest b-tag scoring jet, $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet\relax }}{178}{figure.caption.156}\protected@file@percent }
\newlabel{fig:semilep4vecvbls2}{{B.24}{178}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: Magnitude of the event $E_T^{miss}$, $E_T^{miss}$ $\phi $ (branch cut chosen to range from -$\pi $/2 to $\pi $/2), $p_{T}$ of highest b-tag scoring jet, $\eta $ of highest b-tag scoring jet, $\phi $ of highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of highest btag-scoring jet\relax }{figure.caption.156}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.25}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $p_{T}$ of second-highest b-tag scoring jet, $\eta $ of second-highest b-tag scoring jet, $\phi $ of second-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of second-highest btag-scoring jet, $p_{T}$ of third-highest b-tag scoring jet, $\eta $ of third-highest b-tag scoring jet\relax }}{178}{figure.caption.157}\protected@file@percent }
\newlabel{fig:semilep4vecvbls4}{{B.25}{178}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $p_{T}$ of second-highest b-tag scoring jet, $\eta $ of second-highest b-tag scoring jet, $\phi $ of second-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of second-highest btag-scoring jet, $p_{T}$ of third-highest b-tag scoring jet, $\eta $ of third-highest b-tag scoring jet\relax }{figure.caption.157}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.26}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\phi $ of third-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of third-highest btag-scoring jet, $p_{T}$ of fourth-highest b-tag scoring jet, $\eta $ of fourth-highest b-tag scoring jet, $\phi $ of fourth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of fourth-highest btag-scoring jet\relax }}{179}{figure.caption.158}\protected@file@percent }
\newlabel{fig:semilep4vecvbls3}{{B.26}{179}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $\phi $ of third-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of third-highest btag-scoring jet, $p_{T}$ of fourth-highest b-tag scoring jet, $\eta $ of fourth-highest b-tag scoring jet, $\phi $ of fourth-highest btag-scoring jet (measured with respect to the Higgs candidate), pseudo-continuous b-tag score of fourth-highest btag-scoring jet\relax }{figure.caption.158}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {B.27}{\ignorespaces Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $p_{T}$ of leading lepton, $\eta $ of leading lepton, $\phi $ of leading lepton (measured with respect to the Higgs candidate)\relax }}{179}{figure.caption.159}\protected@file@percent }
\newlabel{fig:semilep4vecvbls5}{{B.27}{179}{Normalized training variables for the 4-vector BDT, output by TMVA. CP-odd ttH is denoted as "signal" (blue); CP-even ttH is denoted as "background" (red). Variables shown are, from left to right, top row to bottom row: $p_{T}$ of leading lepton, $\eta $ of leading lepton, $\phi $ of leading lepton (measured with respect to the Higgs candidate)\relax }{figure.caption.159}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {B.1.4}Dedicated CP-45 BDT Training}{181}{subsection.B.1.4}\protected@file@percent }
\@writefile{loa}{\contentsline {chapter}{\numberline {C}Auxiliary Plots}{183}{section*.160}\protected@file@percent }
\@writefile{lof}{\addvspace {8pt}}
\@writefile{lot}{\addvspace {8pt}}
\@writefile{lom}{\addvspace {8pt}}
\@writefile{lop}{\addvspace {8pt}}
\@writefile{loi}{\addvspace {8pt}}