-
Notifications
You must be signed in to change notification settings - Fork 137
/
trandition.py
68 lines (59 loc) · 2.75 KB
/
trandition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import SGDClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
import numpy as np
import opts
import dataHelper
#refer to "https://zhuanlan.zhihu.com/p/26729228"
opt = opts.parse_opt()
import dataHelper as helper
train_iter, test_iter = dataHelper.loadData(opt,embedding=False)
#categories = ['good', 'bad', 'mid']
x_train,y_train=train_iter
x_test,y_test = test_iter
#opt.model ="haha"
if opt.model == "bayes":
""" Naive Bayes classifier """
# sklearn有一套很成熟的管道流程Pipeline,快速搭建机器学习模型神器
bayes_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB())
])
bayes_clf.fit(x_train, y_train)
""" Predict the test dataset using Naive Bayes"""
predicted = bayes_clf.predict(x_test)
print('Naive Bayes correct prediction: {:4.4f}'.format(np.mean(predicted == y_test)))
# 输出f1分数,准确率,召回率等指标
# print(metrics.classification_report(y_test, predicted, target_names=categories))
elif opt.model == "svm":
""" Support Vector Machine (SVM) classifier"""
svm_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier(loss='hinge', penalty='l2', alpha=1e-3, random_state=42)),
])
svm_clf.fit(x_train, y_train)
predicted = svm_clf.predict(x_test)
print('SVM correct prediction: {:4.4f}'.format(np.mean(predicted == y_test)))
# print(metrics.classification_report(y_test, predicted, target_names=categories))
else:
""" 10-折交叉验证 """
clf_b = make_pipeline(CountVectorizer(), TfidfTransformer(), MultinomialNB())
clf_s= make_pipeline(CountVectorizer(), TfidfTransformer(), SGDClassifier(loss='hinge', penalty='l2', alpha=1e-3, n_iter= 5, random_state=42))
bayes_10_fold = cross_val_score(clf_b, x_test, y_test, cv=10)
svm_10_fold = cross_val_score(clf_s, x_test, y_test, cv=10)
print('Naives Bayes 10-fold correct prediction: {:4.4f}'.format(np.mean(bayes_10_fold)))
print('SVM 10-fold correct prediction: {:4.4f}'.format(np.mean(svm_10_fold)))
# 输出混淆矩阵
#print("Confusion Matrix:")
#print(metrics.confusion_matrix(y_test, predicted))
#print('\n')