-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathcli_demo.py
87 lines (71 loc) · 3.24 KB
/
cli_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import platform
import torch
from threading import Thread
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
import argparse
from transformers import TextIteratorStreamer
from transformers.generation.utils import GenerationConfig
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype='auto', trust_remote_code=True)
return model, tokenizer
def generate_prompt(query, history):
if not history:
return f"<问>:{query}\n<答>:"
else:
prompt = ''
for i, (old_query, response) in enumerate(history):
prompt += "<问>:{}\n<答>:{}\n".format(old_query, response)
prompt += "<问>:{}\n<答>:".format(query)
return prompt
def remove_overlap(str1, str2):
for i in range(len(str1), -1, -1):
if str1.endswith(str2[:i]):
return str2[i:]
return str2
def main(args):
model, tokenizer = load_model(args.model_name)
sep = tokenizer.convert_ids_to_tokens(tokenizer.eos_token_id)
print(sep)
model = model.eval()
gen_kwargs = {'max_new_tokens': 1024, 'do_sample':True, 'top_p':0.7, 'temperature':0.3, 'repetition_penalty':1.1}
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
history = []
print("HuatuoGPT: 你好,我是一个解答医疗健康问题的大模型,目前处于测试阶段,请以医嘱为准。请问有什么可以帮到您?输入 clear 清空对话历史,stop 终止程序")
while True:
query = input("\n用户:")
if query == "stop":
break
if query == "clear":
history = []
os.system(clear_command)
print("HuatuoGPT: 你好,我是一个解答医疗健康问题的大模型,目前处于测试阶段,请以医嘱为准。请问有什么可以帮到您?输入 clear 清空对话历史,stop 终止程序")
continue
print(f"HuatuoGPT: ", end="", flush=True)
prompt = generate_prompt(query, history)
inputs = tokenizer([prompt], return_tensors="pt")
inputs = inputs.to(model.device)
streamer = TextIteratorStreamer(tokenizer,skip_prompt=True)
generation_kwargs = dict(input_ids=inputs['input_ids'], streamer=streamer, **gen_kwargs)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ''
for new_text in streamer:
if sep in new_text:
new_text = remove_overlap(generated_text,new_text[:-len(sep)])
for char in new_text:
generated_text += char
print(char,end='',flush = True)
break
for char in new_text:
generated_text += char
print(char,end='',flush = True)
history = history + [(query, generated_text)]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default="FreedomIntelligence/HuatuoGPT2-7B")
args = parser.parse_args()
main(args)