forked from suvoooo/Machine_Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVMdemo.py
executable file
·48 lines (35 loc) · 1.16 KB
/
SVMdemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/python
import numpy as np
import math
import sklearn
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation
from sklearn.datasets.samples_generator import make_circles
X,y = make_circles(90, factor=0.2, noise=0.1)
#print type(X)
#plt.scatter(X[:,0],X[:,1], c=y, s=50, cmap='seismic')
r = np.exp(-(X**2).sum(1))
zaxis = [0.2,0.4,0.6,0.8, 1.0]
zaxislabel = [r'0.2',r'0.4', r'0.6', r'0.8', r'1.0']
fig = plt.figure()
ax = Axes3D(fig)
def plot3dim():
#ax=plt.subplot(111, projection='3d')
ax.scatter(X[:,0], X[:,1], r, c=y, s=50, cmap='seismic')
#ax.view_init(elev=elev,azim=azim)
ax.set_xlabel('X')
ax.set_ylabel('y')
ax.set_zlabel('!! SHAKE !!', fontsize=15, labelpad=-1, color='lime')
ax.set_zticklabels(zaxislabel, fontsize=7)
ax.set_zticks(zaxis)
ax.grid('False')
return fig,
def animate(k):
ax.view_init(elev=k,azim=30)
#return fig,
ani = animation.FuncAnimation(fig, animate, init_func=plot3dim, frames=360, interval=30, blit=False)
#ani.save('SVManim.mp4', fps=30, dpi=200, extra_args=['-vcodec', 'libx264'])
#plot3dim(elev=10, azim=-20, X=X, y=y)
plt.show()