This repository has been archived by the owner on Apr 19, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 94
/
sshcrc.c
216 lines (199 loc) · 8.49 KB
/
sshcrc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
* CRC32 implementation.
*
* The basic concept of a CRC is that you treat your bit-string
* abcdefg... as a ludicrously long polynomial M=a+bx+cx^2+dx^3+...
* over Z[2]. You then take a modulus polynomial P, and compute the
* remainder of M on division by P. Thus, an erroneous message N
* will only have the same CRC if the difference E = M-N is an
* exact multiple of P. (Note that as we are working over Z[2], M-N
* = N-M = M+N; but that's not very important.)
*
* What makes the CRC good is choosing P to have good properties:
*
* - If its first and last terms are both nonzero then it cannot
* be a factor of any single term x^i. Therefore if M and N
* differ by exactly one bit their CRCs will guaranteeably
* be distinct.
*
* - If it has a prime (irreducible) factor with three terms then
* it cannot divide a polynomial of the form x^i(1+x^j).
* Therefore if M and N differ by exactly _two_ bits they will
* have different CRCs.
*
* - If it has a factor (x+1) then it cannot divide a polynomial
* with an odd number of terms. Therefore if M and N differ by
* _any odd_ number of bits they will have different CRCs.
*
* - If the error term E is of the form x^i*B(x) where B(x) has
* order less than P (i.e. a short _burst_ of errors) then P
* cannot divide E (since no polynomial can divide a shorter
* one), so any such error burst will be spotted.
*
* The CRC32 standard polynomial is
* x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x^1+x^0
*
* In fact, we don't compute M mod P; we compute M*x^32 mod P.
*
* The concrete implementation of the CRC is this: we maintain at
* all times a 32-bit word which is the current remainder of the
* polynomial mod P. Whenever we receive an extra bit, we multiply
* the existing remainder by x, add (XOR) the x^32 term thus
* generated to the new x^32 term caused by the incoming bit, and
* remove the resulting combined x^32 term if present by replacing
* it with (P-x^32).
*
* Bit 0 of the word is the x^31 term and bit 31 is the x^0 term.
* Thus, multiplying by x means shifting right. So the actual
* algorithm goes like this:
*
* x32term = (crcword & 1) ^ newbit;
* crcword = (crcword >> 1) ^ (x32term * 0xEDB88320);
*
* In practice, we pre-compute what will happen to crcword on any
* given sequence of eight incoming bits, and store that in a table
* which we then use at run-time to do the job:
*
* outgoingplusnew = (crcword & 0xFF) ^ newbyte;
* crcword = (crcword >> 8) ^ table[outgoingplusnew];
*
* where table[outgoingplusnew] is computed by setting crcword=0
* and then iterating the first code fragment eight times (taking
* the incoming byte low bit first).
*
* Note that all shifts are rightward and thus no assumption is
* made about exact word length! (Although word length must be at
* _least_ 32 bits, but ANSI C guarantees this for `unsigned long'
* anyway.)
*/
#include <stdlib.h>
#include "ssh.h"
/* ----------------------------------------------------------------------
* Multi-function module. Can be compiled three ways.
*
* - Compile with no special #defines. Will generate a table
* that's already initialised at compile time, and one function
* crc32_compute(buf,len) that uses it. Normal usage.
*
* - Compile with INITFUNC defined. Will generate an uninitialised
* array as the table, and as well as crc32_compute(buf,len) it
* will also generate void crc32_init(void) which sets up the
* table at run time. Useful if binary size is important.
*
* - Compile with GENPROGRAM defined. Will create a standalone
* program that does the initialisation and outputs the table as
* C code.
*/
#define POLY (0xEDB88320L)
#ifdef GENPROGRAM
#define INITFUNC /* the gen program needs the init func :-) */
#endif
#ifdef INITFUNC
/*
* This variant of the code generates the table at run-time from an
* init function.
*/
static unsigned long crc32_table[256];
void crc32_init(void)
{
unsigned long crcword;
int i;
for (i = 0; i < 256; i++) {
unsigned long newbyte, x32term;
int j;
crcword = 0;
newbyte = i;
for (j = 0; j < 8; j++) {
x32term = (crcword ^ newbyte) & 1;
crcword = (crcword >> 1) ^ (x32term * POLY);
newbyte >>= 1;
}
crc32_table[i] = crcword;
}
}
#else
/*
* This variant of the code has the data already prepared.
*/
static const unsigned long crc32_table[256] = {
0x00000000L, 0x77073096L, 0xEE0E612CL, 0x990951BAL, 0x076DC419L,
0x706AF48FL, 0xE963A535L, 0x9E6495A3L, 0x0EDB8832L, 0x79DCB8A4L,
0xE0D5E91EL, 0x97D2D988L, 0x09B64C2BL, 0x7EB17CBDL, 0xE7B82D07L,
0x90BF1D91L, 0x1DB71064L, 0x6AB020F2L, 0xF3B97148L, 0x84BE41DEL,
0x1ADAD47DL, 0x6DDDE4EBL, 0xF4D4B551L, 0x83D385C7L, 0x136C9856L,
0x646BA8C0L, 0xFD62F97AL, 0x8A65C9ECL, 0x14015C4FL, 0x63066CD9L,
0xFA0F3D63L, 0x8D080DF5L, 0x3B6E20C8L, 0x4C69105EL, 0xD56041E4L,
0xA2677172L, 0x3C03E4D1L, 0x4B04D447L, 0xD20D85FDL, 0xA50AB56BL,
0x35B5A8FAL, 0x42B2986CL, 0xDBBBC9D6L, 0xACBCF940L, 0x32D86CE3L,
0x45DF5C75L, 0xDCD60DCFL, 0xABD13D59L, 0x26D930ACL, 0x51DE003AL,
0xC8D75180L, 0xBFD06116L, 0x21B4F4B5L, 0x56B3C423L, 0xCFBA9599L,
0xB8BDA50FL, 0x2802B89EL, 0x5F058808L, 0xC60CD9B2L, 0xB10BE924L,
0x2F6F7C87L, 0x58684C11L, 0xC1611DABL, 0xB6662D3DL, 0x76DC4190L,
0x01DB7106L, 0x98D220BCL, 0xEFD5102AL, 0x71B18589L, 0x06B6B51FL,
0x9FBFE4A5L, 0xE8B8D433L, 0x7807C9A2L, 0x0F00F934L, 0x9609A88EL,
0xE10E9818L, 0x7F6A0DBBL, 0x086D3D2DL, 0x91646C97L, 0xE6635C01L,
0x6B6B51F4L, 0x1C6C6162L, 0x856530D8L, 0xF262004EL, 0x6C0695EDL,
0x1B01A57BL, 0x8208F4C1L, 0xF50FC457L, 0x65B0D9C6L, 0x12B7E950L,
0x8BBEB8EAL, 0xFCB9887CL, 0x62DD1DDFL, 0x15DA2D49L, 0x8CD37CF3L,
0xFBD44C65L, 0x4DB26158L, 0x3AB551CEL, 0xA3BC0074L, 0xD4BB30E2L,
0x4ADFA541L, 0x3DD895D7L, 0xA4D1C46DL, 0xD3D6F4FBL, 0x4369E96AL,
0x346ED9FCL, 0xAD678846L, 0xDA60B8D0L, 0x44042D73L, 0x33031DE5L,
0xAA0A4C5FL, 0xDD0D7CC9L, 0x5005713CL, 0x270241AAL, 0xBE0B1010L,
0xC90C2086L, 0x5768B525L, 0x206F85B3L, 0xB966D409L, 0xCE61E49FL,
0x5EDEF90EL, 0x29D9C998L, 0xB0D09822L, 0xC7D7A8B4L, 0x59B33D17L,
0x2EB40D81L, 0xB7BD5C3BL, 0xC0BA6CADL, 0xEDB88320L, 0x9ABFB3B6L,
0x03B6E20CL, 0x74B1D29AL, 0xEAD54739L, 0x9DD277AFL, 0x04DB2615L,
0x73DC1683L, 0xE3630B12L, 0x94643B84L, 0x0D6D6A3EL, 0x7A6A5AA8L,
0xE40ECF0BL, 0x9309FF9DL, 0x0A00AE27L, 0x7D079EB1L, 0xF00F9344L,
0x8708A3D2L, 0x1E01F268L, 0x6906C2FEL, 0xF762575DL, 0x806567CBL,
0x196C3671L, 0x6E6B06E7L, 0xFED41B76L, 0x89D32BE0L, 0x10DA7A5AL,
0x67DD4ACCL, 0xF9B9DF6FL, 0x8EBEEFF9L, 0x17B7BE43L, 0x60B08ED5L,
0xD6D6A3E8L, 0xA1D1937EL, 0x38D8C2C4L, 0x4FDFF252L, 0xD1BB67F1L,
0xA6BC5767L, 0x3FB506DDL, 0x48B2364BL, 0xD80D2BDAL, 0xAF0A1B4CL,
0x36034AF6L, 0x41047A60L, 0xDF60EFC3L, 0xA867DF55L, 0x316E8EEFL,
0x4669BE79L, 0xCB61B38CL, 0xBC66831AL, 0x256FD2A0L, 0x5268E236L,
0xCC0C7795L, 0xBB0B4703L, 0x220216B9L, 0x5505262FL, 0xC5BA3BBEL,
0xB2BD0B28L, 0x2BB45A92L, 0x5CB36A04L, 0xC2D7FFA7L, 0xB5D0CF31L,
0x2CD99E8BL, 0x5BDEAE1DL, 0x9B64C2B0L, 0xEC63F226L, 0x756AA39CL,
0x026D930AL, 0x9C0906A9L, 0xEB0E363FL, 0x72076785L, 0x05005713L,
0x95BF4A82L, 0xE2B87A14L, 0x7BB12BAEL, 0x0CB61B38L, 0x92D28E9BL,
0xE5D5BE0DL, 0x7CDCEFB7L, 0x0BDBDF21L, 0x86D3D2D4L, 0xF1D4E242L,
0x68DDB3F8L, 0x1FDA836EL, 0x81BE16CDL, 0xF6B9265BL, 0x6FB077E1L,
0x18B74777L, 0x88085AE6L, 0xFF0F6A70L, 0x66063BCAL, 0x11010B5CL,
0x8F659EFFL, 0xF862AE69L, 0x616BFFD3L, 0x166CCF45L, 0xA00AE278L,
0xD70DD2EEL, 0x4E048354L, 0x3903B3C2L, 0xA7672661L, 0xD06016F7L,
0x4969474DL, 0x3E6E77DBL, 0xAED16A4AL, 0xD9D65ADCL, 0x40DF0B66L,
0x37D83BF0L, 0xA9BCAE53L, 0xDEBB9EC5L, 0x47B2CF7FL, 0x30B5FFE9L,
0xBDBDF21CL, 0xCABAC28AL, 0x53B39330L, 0x24B4A3A6L, 0xBAD03605L,
0xCDD70693L, 0x54DE5729L, 0x23D967BFL, 0xB3667A2EL, 0xC4614AB8L,
0x5D681B02L, 0x2A6F2B94L, 0xB40BBE37L, 0xC30C8EA1L, 0x5A05DF1BL,
0x2D02EF8DL};
#endif
#ifdef GENPROGRAM
int main(void)
{
int i;
crc32_init();
for (i = 0; i < 256; i++) {
printf("%s0x%08lXL%s",
(i % 4 == 0 ? " " : " "),
crc32_table[i],
(i % 4 == 3 ? (i == 255 ? "\n" : ",\n") : ","));
}
return 0;
}
#endif
unsigned long crc32_update(unsigned long crcword, const void *buf, size_t len)
{
const unsigned char *p = (const unsigned char *)buf;
while (len--) {
unsigned long newbyte = *p++;
newbyte ^= crcword & 0xFFL;
crcword = (crcword >> 8) ^ crc32_table[newbyte];
}
return crcword;
}
unsigned long crc32_compute(const void *buf, size_t len)
{
return crc32_update(0L, buf, len);
}