Skip to content

Uniform, random sampling: large study and results of different SAT-based samplers

Notifications You must be signed in to change notification settings

FAMILIAR-project/usampling-exp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Uniform, random sampling: what's the current status?

Large study and results of different SAT-based samplers:

over different data:

Pre-built Docker image:

  • available here https://cloud.docker.com/repository/docker/macher/usampling
  • docker pull macher/usampling:squashed (warning: use :fmlinux for a Docker image with th 5Gb dataset of Linux feature model)
  • contains all scripts, tools, and dataset (not feature model history)
  • usage example: docker run -it -v $(pwd):/home/usampling-exp macher/usampling:squashed /bin/bash -c 'cd /home/usampling-exp/; python3 usampling-experiments.py -t 1 --unigen2 -flas Benchmarks' for Unigen2 sampler, timeout 1 second, and only formulas contained in the Benchmarks folder
  • we're planning to provide the script to build the Docker image

Requirements:

  • Docker image with Python 3, pandas, numpy, setuptools, pycoSAT, anytree
  • solvers above and a proper installation
  • time and resources ;)

Usage (Sampling)

docker run -it -v $(pwd):/home/usampling-exp:z macher/usampling:squashed /bin/bash for developping... you can edit files that are bound to the Docker file. And experiments with procedures/samplers inside the Docker.

docker run -v $(pwd):/home/usampling-exp:z macher/usampling /bin/bash -c 'cd /home/usampling-exp/; echo STARTING; python3 usampling-experiments.py -flas /home/samplingfm/Benchmarks/Blasted_Real/blasted_case141.cnf /home/samplingfm/Benchmarks/Blasted_Real/blasted_case142.cnf --spur -t 1; echo END'

is calling SPUR sampler, with a timeout of 1 second, and with formulas explicitly given (here two formulas: useful to focus on specific formulas). You can also specify a folder.

Without flas default formulas contained in the Docker folder/subfolders /home/samplingfm/ are processed (around 500 files).

Usage (Uniformity)

We assess uniformity in two ways:

  • Barbarik (https://github.com/meelgroup/barbarik). To compute uniformity for a set of models: python3 barbarikloop.py -flas gilles --sampler 10 --seed 1 --timeout 60 where sampler is the sampler to be assessed (1=Unigen, 2=QuickSampler, 3=STS, 4=CMS, 5=UniGen3, 6=SPUR, 7=SMARCH, 8=UniGen2,9=KUS, 10=Distance-based Sampling), seed an integer seed and a timeout in seconds. it supports all the parameters of barbarik (use --help to see a description of all the options). We can also specify the sampler used as reference the same way with --ref-sampler followed by the sampler to use.
  • usage example: docker run -v $(pwd):/home/usampling-exp:z macher/usampling /bin/bash -c 'cd /home/usampling-exp/; echo STARTING; python3 barbarikloop.py -flas /home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-refined.cnf --sampler 9 --seed 1 --timeout 100; echo END' (QuickSampler with JHipster feature model and timeout=100 seconds... end eta/epsilon defaut values cmd: ['python3', 'barbarik.py', '--seed', '1', '--verb', '1', '--eta', '0.9', '--epsilon', '0.3', '--delta', '0.05', '--reverse', '0', '--exp', '1', '--minSamples', '0', '--maxSamples', '9223372036854775807', '--sampler', '9', '--ref-sampler','6', '/home/samplingfm/Benchmarks/FeatureModels/FM-3.6.1-refined.cnf']

Architecture

  • all samplers are in samplers directory (and all utilities/dependencies are also in this folder)
  • usampling-experiments.py pilots the scalability study of samplers over different datasets
  • barbarik.py pilots the uniformity checking of samplers over different datasets. It is based on the barbarik tool from Kuldeep Meel et al: https://github.com/meelgroup/barbarik. This version supports uniformity check for all the 10 solvers above and uses KUS as a reference uniform solver, if not specified in the command line above.
  • barbarikloop.py allows to run uniformity checks on set fo files (using the same flas technique as above) and report the results in a CSV file
  • computeDeviations.py computes feature deviation graphs as proposed in the paper: "Uniform Sampling of SAT Solutions for Configurable Systems: Are We There Yet?" by Plazar et al., ICST 2019 (https://hal.inria.fr/hal-01991857). Under re-construction to support all solvers and improve usability.
  • Docker image is up to date with the current git

About

Uniform, random sampling: large study and results of different SAT-based samplers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •