-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_analysis.py
290 lines (238 loc) · 12.3 KB
/
data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from itertools import product
from tqdm import tqdm
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import VotingClassifier
from sklearn.externals import joblib
pd.options.mode.chained_assignment = None
categories = pd.read_csv("item_categories.csv")
items = pd.read_csv("items.csv")
shops = pd.read_csv("shops.csv")
train = pd.read_csv("sales_train_v2.csv")
sample_submission = pd.read_csv("sample_submission.csv")
test = pd.read_csv("test.csv")
testID = test['ID']
#информация о датасетах
# print("______Train______")
# print(train.info())
# print("___Categories____")
# print(categories.info())
# print("______Items______")
# print(items.info())
# print("______Shops______")
# print(shops.info())
#размер тестовой и тренеровочной выборки
# print(train.shape)
# print(test.shape)
#содержание столбцов таблиц
# print(train.head())
# print(test.head())
#проверка NaN и Null значений в выборках
# print(train.isnull().sum())
# print(test.isnull().sum())
#удаление дубликатов строк
print("Train size before dropping duplicates:", train.shape)
train.drop_duplicates(subset=["date", "date_block_num", "shop_id", "item_id", "item_cnt_day"],
keep="first",
inplace=True)
print("Train size after dropping duplicates:", train.shape)
#проверка остальных csv файлов на NaN и null на значения
# print(shops.isnull().sum())
# print(items.isnull().sum())
# print(categories.isnull().sum())
#Searcing unreasonable values
# print("____price_____")
# print("price_min: ", train.item_price.min())
# print("price_max: ", train.item_price.max())
# print("price_mean: ", train.item_price.mean())
# print("price_median: ", train.item_price.median())
# print("____cnt_____")
# print("cnt_min: ",train.item_cnt_day.min())
# print("cnt_min: ",train.item_cnt_day.max())
# print("cnt_min: ",train.item_cnt_day.mean())
# print("cnt_min: ",train.item_cnt_day.median())
# dif1 = train.item_price.value_counts().sort_index(ascending=False)
# print(dif1)
# dif2 = train.item_cnt_day.value_counts().sort_index(ascending=False)
# print(dif2)
# ds = dif1.to_frame().reset_index()
# ds.columns.values[1] = "number"
# ds.columns.values[0] = "item_price"
# sns.set(style="ticks")
# sns.lmplot("item_price", "number", ds)
#
# plt.show()
print("Train size before deleting unreasonable values:", train.shape)
train = train[(train.item_price > 0) & (train.item_price < 300000) & (train.item_cnt_day > 0)]
print("Train size after deleting unreasonable values:", train.shape)
# формат даты
print('Data format changing start')
train['date'] = pd.to_datetime(train['date'], format='%d.%m.%Y')
print('Data format changing ended')
print("Agregating data")
# Создаем наборы уникальных занчений товар-магазин для каждого месяца
month_table = []
for block_num in train["date_block_num"].unique():
month_shops = train[train['date_block_num']==block_num]['shop_id'].unique()
month_items = train[train['date_block_num']==block_num]['item_id'].unique()
month_table.append(np.array(list(product(*[month_shops, month_items, [block_num]])),dtype='int32'))
# Создаем из месячных таблиц товар-магазин Pandas dataframe
indexes = ['shop_id', 'item_id', 'date_block_num']
month_table = pd.DataFrame(np.vstack(month_table), columns = indexes, dtype=np.int32)
train['item_cnt_day'] = train['item_cnt_day'].clip(0, 20)
# Расчет объема продажи товаров за месяц
month_cnt = train.groupby(indexes)['item_cnt_day'].agg(['sum']).reset_index().rename(columns = {'sum': 'item_cnt_month'})
month_cnt['item_cnt_month'] = month_cnt['item_cnt_month'].astype(int)
# добавление данных в месячную таблицу
new_train = pd.merge(month_table,month_cnt,how='left',on=indexes).fillna(0)
new_train['item_cnt_month'] = new_train['item_cnt_month'].astype(int)
# сортировка данных
new_train.sort_values(['date_block_num', 'shop_id', 'item_id'], inplace=True)
# # проверка правильности
# print(train['item_cnt_day'].sum())
# print(new_train['item_cnt_month'].sum())
# print(month_cnt['item_cnt_month'].sum())
print("Aggreating ended")
# добавление item_category_id
new_train = new_train.merge(items[['item_id', 'item_category_id']], on=['item_id'], how = 'left')
test = test.merge(items[['item_id', 'item_category_id']], on=['item_id'], how = 'left')
new_train = new_train.drop_duplicates(subset=["shop_id", "item_id", "date_block_num"] )
# print('_____Train______')
# print(new_train)
#
#
# print("_____Test_______")
# print(test)
# print(new_train.reset_index().groupby(['item_id', 'date_block_num', 'shop_id']).mean())
def TrainTestUnion(new_train, test):
# объединение тестовой и тренировочной выборок
test["date_block_num"] = 34
train_test = pd.concat([new_train, test], axis=0)
train_test = train_test.drop(columns=['ID'])
# print(train_test)
train_test = train_test.fillna(0)
return train_test
index = ['shop_id', 'item_id', 'item_category_id', 'date_block_num']
# Добавление даты
def DataFeatures(train_test):
dates_train = train[['date', 'date_block_num']].drop_duplicates()
dates_test = dates_train[dates_train['date_block_num'] == 34-12]
dates_test['date_block_num'] = 34
dates_test['date'] = dates_test['date'] + pd.DateOffset(years=1)
dates_all = pd.concat([dates_train, dates_test])
dates_all['dow'] = dates_all['date'].dt.dayofweek
dates_all['year'] = dates_all['date'].dt.year
dates_all['month'] = dates_all['date'].dt.month
dates_all = pd.get_dummies(dates_all, columns=['dow'])
dow_col = ['dow_' + str(x) for x in range(7)]
date_features = dates_all.groupby(['year', 'month', 'date_block_num'])[dow_col].agg('sum').reset_index()
date_features['days_of_month'] = date_features[dow_col].sum(axis=1)
date_features['year'] = date_features['year'] - 2013
date_features = date_features[['month', 'year', 'days_of_month', 'date_block_num']]
train_test = train_test.merge(date_features, on='date_block_num', how='left')
# print(train_test)
date_columns = date_features.columns.difference(set(index))
# print(date_columns)
return train_test, date_columns
# Scale features
def ScaleFeatures(train_test, date_columns, index):
train = train_test[train_test['date_block_num']!=train_test['date_block_num'].max()]
test = train_test[train_test['date_block_num']==train_test['date_block_num'].max()]
scalar = StandardScaler()
col = ['date_block_num']
feature_columns = list(set(index + list(date_columns)).difference(col))
train[feature_columns] = scalar.fit_transform(train[feature_columns])
test[feature_columns] = scalar.transform(test[feature_columns])
train_test = pd.concat([train, test], axis=0)
# print(train_test)
return train_test
def ModelBuilder(train_test):
kfold = StratifiedKFold(n_splits=5, shuffle=True)
classifiers = []
random_state = 0
classifiers.append(SVC(random_state=random_state))
classifiers.append(DecisionTreeClassifier(random_state=random_state))
classifiers.append(AdaBoostClassifier(DecisionTreeClassifier(random_state=random_state), random_state=random_state,
learning_rate=0.1))
classifiers.append(RandomForestClassifier(random_state=random_state))
classifiers.append(ExtraTreesClassifier(random_state=random_state))
classifiers.append(GradientBoostingClassifier(random_state=random_state))
classifiers.append(MLPClassifier(random_state=random_state))
classifiers.append(KNeighborsClassifier())
classifiers.append(LogisticRegression(random_state=random_state))
classifiers.append(LinearDiscriminantAnalysis())
cv_results = []
train_test = train_test[train_test['date_block_num']!=train_test['date_block_num'].max()]
X_train = train_test[['item_category_id', 'item_id', 'shop_id', 'month', 'year', 'days_of_month']][:100000]
# print('__________X_train________')
# print(X_train)
Y_train = (train_test['item_cnt_month'][:100000])
# print('__________Y_train________')
# print(Y_train)
for classifier in tqdm(classifiers):
cv_results.append(cross_val_score(classifier, X_train, y=Y_train, scoring="accuracy", cv=kfold, n_jobs=1))
cv_means = []
cv_std = []
for cv_result in cv_results:
cv_means.append(cv_result.mean())
cv_std.append(cv_result.std())
cv_res = pd.DataFrame(
{"CrossValMeans": cv_means, "CrossValerrors": cv_std, "Algorithm": ["SVC", "DecisionTree", "AdaBoost",
"RandomForest", "ExtraTrees",
"GradientBoosting",
"MultipleLayerPerceptron", "KNeighboors",
"LogisticRegression",
"LinearDiscriminantAnalysis"]})
print(cv_res)
g = sns.barplot("CrossValMeans", "Algorithm", data=cv_res, palette="Set3", orient="h", **{'xerr': cv_std})
g.set_xlabel("Mean Accuracy")
g = g.set_title("Cross validation scores")
plt.show()
train_test = TrainTestUnion(new_train, test)
train_test, date_columns = DataFeatures(train_test)
train_test = ScaleFeatures(train_test, date_columns, index)
# print(train_test)
# DelBadNumbers(train_test)
# print(train_test.keys())
# ModelBuilder(train_test)
print("Разбиение данных")
train = train_test[(train_test['date_block_num']!=train_test['date_block_num'].max())
& ((((((((((train_test["date_block_num"] == 6) | (train_test["date_block_num"] == 7)) |
(train_test["date_block_num"] == 8)) | (train_test["date_block_num"] == 9)) |
(train_test["date_block_num"] == 10)) | (train_test["date_block_num"] == 18)) |
(train_test["date_block_num"] == 19)) | (train_test["date_block_num"] == 20)) |
(train_test["date_block_num"] == 21)) | (train_test["date_block_num"] == 22))]
X_train = train[['item_category_id', 'item_id', 'shop_id', 'month', 'year', 'days_of_month']]
Y_train = train['item_cnt_month']
test = train_test[train_test['date_block_num']==train_test['date_block_num'].max()]
test = test[['item_category_id', 'item_id', 'shop_id', 'month', 'year', 'days_of_month']]
print("Разбиение окончено")
random_state = 0
classifiers = [('svc', SVC(random_state=random_state)), ('gbc', GradientBoostingClassifier(random_state=random_state)),
('mlp', MLPClassifier(random_state=random_state)),
('LogisticRegression', LogisticRegression(random_state=random_state))]
VotClassifier = VotingClassifier(classifiers)
mlp = MLPClassifier(random_state=random_state)
print("Начало обучения")
mlp = mlp.fit(X_train, Y_train)
print("Обучение окончено")
print("Начало предсказания")
test_cnt = pd.Series(mlp.predict(test), name="count")
print("Предсказание окончено")
results = pd.concat([testID, test_cnt],axis=1)
results.to_csv("Kaggle.csv",index=False)