forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperators.py
747 lines (626 loc) · 24.8 KB
/
operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from functools import partial
import io
import six
import math
import random
import cv2
import numpy as np
from PIL import Image, ImageOps, __version__ as PILLOW_VERSION
from paddle.vision.transforms import ColorJitter as RawColorJitter
from paddle.vision.transforms import RandomRotation as RawRandomRotation
from paddle.vision.transforms import ToTensor, Normalize, RandomHorizontalFlip, RandomResizedCrop
from paddle.vision.transforms import functional as F
from .autoaugment import ImageNetPolicy
from .functional import augmentations
from ppcls.utils import logger
class UnifiedResize(object):
def __init__(self, interpolation=None, backend="cv2", return_numpy=True):
_cv2_interp_from_str = {
'nearest': cv2.INTER_NEAREST,
'bilinear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA,
'bicubic': cv2.INTER_CUBIC,
'lanczos': cv2.INTER_LANCZOS4,
'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
}
_pil_interp_from_str = {
'nearest': Image.NEAREST,
'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'box': Image.BOX,
'lanczos': Image.LANCZOS,
'hamming': Image.HAMMING,
'random': (Image.BILINEAR, Image.BICUBIC)
}
def _cv2_resize(src, size, resample):
if isinstance(resample, tuple):
resample = random.choice(resample)
return cv2.resize(src, size, interpolation=resample)
def _pil_resize(src, size, resample, return_numpy=True):
if isinstance(resample, tuple):
resample = random.choice(resample)
if isinstance(src, np.ndarray):
pil_img = Image.fromarray(src)
else:
pil_img = src
pil_img = pil_img.resize(size, resample)
if return_numpy:
return np.asarray(pil_img)
return pil_img
if backend.lower() == "cv2":
if isinstance(interpolation, str):
interpolation = _cv2_interp_from_str[interpolation.lower()]
# compatible with opencv < version 4.4.0
elif interpolation is None:
interpolation = cv2.INTER_LINEAR
self.resize_func = partial(_cv2_resize, resample=interpolation)
elif backend.lower() == "pil":
if isinstance(interpolation, str):
interpolation = _pil_interp_from_str[interpolation.lower()]
self.resize_func = partial(
_pil_resize, resample=interpolation, return_numpy=return_numpy)
else:
logger.warning(
f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
)
self.resize_func = cv2.resize
def __call__(self, src, size):
if isinstance(size, list):
size = tuple(size)
return self.resize_func(src, size)
class RandomInterpolationAugment(object):
def __init__(self, prob):
self.prob = prob
def _aug(self, img):
img_shape = img.shape
side_ratio = np.random.uniform(0.2, 1.0)
small_side = int(side_ratio * img_shape[0])
interpolation = np.random.choice([
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA,
cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
])
small_img = cv2.resize(
img, (small_side, small_side), interpolation=interpolation)
interpolation = np.random.choice([
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA,
cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
])
aug_img = cv2.resize(
small_img, (img_shape[1], img_shape[0]),
interpolation=interpolation)
return aug_img
def __call__(self, img):
if np.random.random() < self.prob:
if isinstance(img, np.ndarray):
return self._aug(img)
else:
pil_img = np.array(img)
aug_img = self._aug(pil_img)
img = Image.fromarray(aug_img.astype(np.uint8))
return img
else:
return img
class OperatorParamError(ValueError):
""" OperatorParamError
"""
pass
class DecodeImage(object):
""" decode image """
def __init__(self,
to_np=True,
to_rgb=True,
channel_first=False,
backend="cv2"):
self.to_np = to_np # to numpy
self.to_rgb = to_rgb # only enabled when to_np is True
self.channel_first = channel_first # only enabled when to_np is True
if backend.lower() not in ["cv2", "pil"]:
logger.warning(
f"The backend of DecodeImage only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
)
backend = "cv2"
self.backend = backend.lower()
if not to_np:
logger.warning(
f"\"to_rgb\" and \"channel_first\" are only enabled when to_np is True. \"to_np\" is now {to_np}."
)
def __call__(self, img):
if isinstance(img, Image.Image):
assert self.backend == "pil", "invalid input 'img' in DecodeImage"
elif isinstance(img, np.ndarray):
assert self.backend == "cv2", "invalid input 'img' in DecodeImage"
elif isinstance(img, bytes):
if self.backend == "pil":
data = io.BytesIO(img)
img = Image.open(data)
else:
data = np.frombuffer(img, dtype="uint8")
img = cv2.imdecode(data, 1)
else:
raise ValueError("invalid input 'img' in DecodeImage")
if self.to_np:
if self.backend == "pil":
assert img.mode == "RGB", f"invalid shape of image[{img.shape}]"
img = np.asarray(img)[:, :, ::-1] # BRG
if self.to_rgb:
assert img.shape[
2] == 3, f"invalid shape of image[{img.shape}]"
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
return img
class ResizeImage(object):
""" resize image """
def __init__(self,
size=None,
resize_short=None,
interpolation=None,
backend="cv2",
return_numpy=True):
if resize_short is not None and resize_short > 0:
self.resize_short = resize_short
self.w = None
self.h = None
elif size is not None:
self.resize_short = None
self.w = size if type(size) is int else size[0]
self.h = size if type(size) is int else size[1]
else:
raise OperatorParamError("invalid params for ReisizeImage for '\
'both 'size' and 'resize_short' are None")
self._resize_func = UnifiedResize(
interpolation=interpolation,
backend=backend,
return_numpy=return_numpy)
def __call__(self, img):
if isinstance(img, np.ndarray):
img_h, img_w = img.shape[:2]
else:
img_w, img_h = img.size
if self.resize_short is not None:
percent = float(self.resize_short) / min(img_w, img_h)
w = int(round(img_w * percent))
h = int(round(img_h * percent))
else:
w = self.w
h = self.h
return self._resize_func(img, (w, h))
class CropWithPadding(RandomResizedCrop):
"""
crop image and padding to original size
"""
def __init__(self,
prob=1,
padding_num=0,
size=224,
scale=(0.08, 1.0),
ratio=(3. / 4, 4. / 3),
interpolation='bilinear',
key=None):
super().__init__(size, scale, ratio, interpolation, key)
self.prob = prob
self.padding_num = padding_num
def __call__(self, img):
is_cv2_img = False
if isinstance(img, np.ndarray):
flag = True
if np.random.random() < self.prob:
# RandomResizedCrop augmentation
new = np.zeros_like(np.array(img)) + self.padding_num
# orig_W, orig_H = F._get_image_size(sample)
orig_W, orig_H = self._get_image_size(img)
i, j, h, w = self._get_param(img)
cropped = F.crop(img, i, j, h, w)
new[i:i + h, j:j + w, :] = np.array(cropped)
if not isinstance:
new = Image.fromarray(new.astype(np.uint8))
return new
else:
return img
def _get_image_size(self, img):
if F._is_pil_image(img):
return img.size
elif F._is_numpy_image(img):
return img.shape[:2][::-1]
elif F._is_tensor_image(img):
return img.shape[1:][::-1] # chw
else:
raise TypeError("Unexpected type {}".format(type(img)))
class CropImage(object):
""" crop image """
def __init__(self, size):
if type(size) is int:
self.size = (size, size)
else:
self.size = size # (h, w)
def __call__(self, img):
w, h = self.size
img_h, img_w = img.shape[:2]
w_start = (img_w - w) // 2
h_start = (img_h - h) // 2
w_end = w_start + w
h_end = h_start + h
return img[h_start:h_end, w_start:w_end, :]
class Padv2(object):
def __init__(self,
size=None,
size_divisor=32,
pad_mode=0,
offsets=None,
fill_value=(127.5, 127.5, 127.5)):
"""
Pad image to a specified size or multiple of size_divisor.
Args:
size (int, list): image target size, if None, pad to multiple of size_divisor, default None
size_divisor (int): size divisor, default 32
pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
"""
if not isinstance(size, (int, list)):
raise TypeError(
"Type of target_size is invalid when random_size is True. \
Must be List, now is {}".format(type(size)))
if isinstance(size, int):
size = [size, size]
assert pad_mode in [
-1, 0, 1, 2
], 'currently only supports four modes [-1, 0, 1, 2]'
if pad_mode == -1:
assert offsets, 'if pad_mode is -1, offsets should not be None'
self.size = size
self.size_divisor = size_divisor
self.pad_mode = pad_mode
self.fill_value = fill_value
self.offsets = offsets
def apply_image(self, image, offsets, im_size, size):
x, y = offsets
im_h, im_w = im_size
h, w = size
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
return canvas
def __call__(self, img):
im_h, im_w = img.shape[:2]
if self.size:
w, h = self.size
assert (
im_h <= h and im_w <= w
), '(h, w) of target size should be greater than (im_h, im_w)'
else:
h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)
if h == im_h and w == im_w:
return img.astype(np.float32)
if self.pad_mode == -1:
offset_x, offset_y = self.offsets
elif self.pad_mode == 0:
offset_y, offset_x = 0, 0
elif self.pad_mode == 1:
offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
else:
offset_y, offset_x = h - im_h, w - im_w
offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
return self.apply_image(img, offsets, im_size, size)
class RandomCropImage(object):
"""Random crop image only
"""
def __init__(self, size):
super(RandomCropImage, self).__init__()
if isinstance(size, int):
size = [size, size]
self.size = size
def __call__(self, img):
h, w = img.shape[:2]
tw, th = self.size
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
img = img[i:i + th, j:j + tw, :]
return img
class RandCropImage(object):
""" random crop image """
def __init__(self,
size,
scale=None,
ratio=None,
interpolation=None,
backend="cv2"):
if type(size) is int:
self.size = (size, size) # (h, w)
else:
self.size = size
self.scale = [0.08, 1.0] if scale is None else scale
self.ratio = [3. / 4., 4. / 3.] if ratio is None else ratio
self._resize_func = UnifiedResize(
interpolation=interpolation, backend=backend)
def __call__(self, img):
size = self.size
scale = self.scale
ratio = self.ratio
aspect_ratio = math.sqrt(random.uniform(*ratio))
w = 1. * aspect_ratio
h = 1. / aspect_ratio
img_h, img_w = img.shape[:2]
bound = min((float(img_w) / img_h) / (w**2),
(float(img_h) / img_w) / (h**2))
scale_max = min(scale[1], bound)
scale_min = min(scale[0], bound)
target_area = img_w * img_h * random.uniform(scale_min, scale_max)
target_size = math.sqrt(target_area)
w = int(target_size * w)
h = int(target_size * h)
i = random.randint(0, img_w - w)
j = random.randint(0, img_h - h)
img = img[j:j + h, i:i + w, :]
return self._resize_func(img, size)
class RandCropImageV2(object):
""" RandCropImageV2 is different from RandCropImage,
it will Select a cutting position randomly in a uniform distribution way,
and cut according to the given size without resize at last."""
def __init__(self, size):
if type(size) is int:
self.size = (size, size) # (h, w)
else:
self.size = size
def __call__(self, img):
if isinstance(img, np.ndarray):
img_h, img_w = img.shape[0], img.shape[1]
else:
img_w, img_h = img.size
tw, th = self.size
if img_h + 1 < th or img_w + 1 < tw:
raise ValueError(
"Required crop size {} is larger then input image size {}".
format((th, tw), (img_h, img_w)))
if img_w == tw and img_h == th:
return img
top = random.randint(0, img_h - th + 1)
left = random.randint(0, img_w - tw + 1)
if isinstance(img, np.ndarray):
return img[top:top + th, left:left + tw, :]
else:
return img.crop((left, top, left + tw, top + th))
class RandFlipImage(object):
""" random flip image
flip_code:
1: Flipped Horizontally
0: Flipped Vertically
-1: Flipped Horizontally & Vertically
"""
def __init__(self, flip_code=1):
assert flip_code in [-1, 0, 1
], "flip_code should be a value in [-1, 0, 1]"
self.flip_code = flip_code
def __call__(self, img):
if random.randint(0, 1) == 1:
if isinstance(img, np.ndarray):
return cv2.flip(img, self.flip_code)
else:
if self.flip_code == 1:
return img.transpose(Image.FLIP_LEFT_RIGHT)
elif self.flip_code == 0:
return img.transpose(Image.FLIP_TOP_BOTTOM)
else:
return img.transpose(Image.FLIP_LEFT_RIGHT).transpose(
Image.FLIP_LEFT_RIGHT)
else:
return img
class AutoAugment(object):
def __init__(self):
self.policy = ImageNetPolicy()
def __call__(self, img):
from PIL import Image
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
img = self.policy(img)
img = np.asarray(img)
class NormalizeImage(object):
""" normalize image such as substract mean, divide std
"""
def __init__(self,
scale=None,
mean=None,
std=None,
order='chw',
output_fp16=False,
channel_num=3):
if isinstance(scale, str):
scale = eval(scale)
assert channel_num in [
3, 4
], "channel number of input image should be set to 3 or 4."
self.channel_num = channel_num
self.output_dtype = 'float16' if output_fp16 else 'float32'
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
self.order = order
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, img):
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img,
np.ndarray), "invalid input 'img' in NormalizeImage"
img = (img.astype('float32') * self.scale - self.mean) / self.std
if self.channel_num == 4:
img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
pad_zeros = np.zeros(
(1, img_h, img_w)) if self.order == 'chw' else np.zeros(
(img_h, img_w, 1))
img = (np.concatenate(
(img, pad_zeros), axis=0)
if self.order == 'chw' else np.concatenate(
(img, pad_zeros), axis=2))
return img.astype(self.output_dtype)
class ToCHWImage(object):
""" convert hwc image to chw image
"""
def __init__(self):
pass
def __call__(self, img):
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
return img.transpose((2, 0, 1))
class AugMix(object):
""" Perform AugMix augmentation and compute mixture.
"""
def __init__(self,
prob=0.5,
aug_prob_coeff=0.1,
mixture_width=3,
mixture_depth=1,
aug_severity=1):
"""
Args:
prob: Probability of taking augmix
aug_prob_coeff: Probability distribution coefficients.
mixture_width: Number of augmentation chains to mix per augmented example.
mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
aug_severity: Severity of underlying augmentation operators (between 1 to 10).
"""
# fmt: off
self.prob = prob
self.aug_prob_coeff = aug_prob_coeff
self.mixture_width = mixture_width
self.mixture_depth = mixture_depth
self.aug_severity = aug_severity
self.augmentations = augmentations
# fmt: on
def __call__(self, image):
"""Perform AugMix augmentations and compute mixture.
Returns:
mixed: Augmented and mixed image.
"""
if random.random() > self.prob:
# Avoid the warning: the given NumPy array is not writeable
return np.asarray(image).copy()
ws = np.float32(
np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
m = np.float32(
np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))
# image = Image.fromarray(image)
mix = np.zeros(image.shape)
for i in range(self.mixture_width):
image_aug = image.copy()
image_aug = Image.fromarray(image_aug)
depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(
1, 4)
for _ in range(depth):
op = np.random.choice(self.augmentations)
image_aug = op(image_aug, self.aug_severity)
mix += ws[i] * np.asarray(image_aug)
mixed = (1 - m) * image + m * mix
return mixed.astype(np.uint8)
class ColorJitter(RawColorJitter):
"""ColorJitter.
"""
def __init__(self, prob=2, *args, **kwargs):
super().__init__(*args, **kwargs)
self.prob = prob
def __call__(self, img):
if np.random.random() < self.prob:
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
img = super()._apply_image(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
return img
class RandomRotation(RawRandomRotation):
"""RandomRotation.
"""
def __init__(self, prob=0.5, *args, **kwargs):
super().__init__(*args, **kwargs)
self.prob = prob
def __call__(self, img):
if np.random.random() < self.prob:
img = super()._apply_image(img)
return img
class Pad(object):
"""
Pads the given PIL.Image on all sides with specified padding mode and fill value.
adapted from: https://pytorch.org/vision/stable/_modules/torchvision/transforms/transforms.html#Pad
"""
def __init__(self,
padding: int,
fill: int=0,
padding_mode: str="constant",
backend: str="pil"):
self.padding = padding
self.fill = fill
self.padding_mode = padding_mode
self.backend = backend
assert backend in [
"pil", "cv2"
], f"backend must in ['pil', 'cv2'], but got {backend}"
def _parse_fill(self, fill, img, min_pil_version, name="fillcolor"):
# Process fill color for affine transforms
major_found, minor_found = (int(v)
for v in PILLOW_VERSION.split('.')[:2])
major_required, minor_required = (int(v) for v in
min_pil_version.split('.')[:2])
if major_found < major_required or (major_found == major_required and
minor_found < minor_required):
if fill is None:
return {}
else:
msg = (
"The option to fill background area of the transformed image, "
"requires pillow>={}")
raise RuntimeError(msg.format(min_pil_version))
num_bands = len(img.getbands())
if fill is None:
fill = 0
if isinstance(fill, (int, float)) and num_bands > 1:
fill = tuple([fill] * num_bands)
if isinstance(fill, (list, tuple)):
if len(fill) != num_bands:
msg = (
"The number of elements in 'fill' does not match the number of "
"bands of the image ({} != {})")
raise ValueError(msg.format(len(fill), num_bands))
fill = tuple(fill)
return {name: fill}
def __call__(self, img):
if self.backend == "pil":
opts = self._parse_fill(self.fill, img, "2.3.0", name="fill")
if img.mode == "P":
palette = img.getpalette()
img = ImageOps.expand(img, border=self.padding, **opts)
img.putpalette(palette)
return img
return ImageOps.expand(img, border=self.padding, **opts)
else:
img = cv2.copyMakeBorder(
img,
self.padding,
self.padding,
self.padding,
self.padding,
cv2.BORDER_CONSTANT,
value=(self.fill, self.fill, self.fill))
return img