forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_cls.py
161 lines (143 loc) · 6.11 KB
/
predict_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import numpy as np
from paddleclas.deploy.utils import logger, config
from paddleclas.deploy.utils.predictor import Predictor
from paddleclas.deploy.utils.get_image_list import get_image_list
from paddleclas.deploy.python.preprocess import create_operators
from paddleclas.deploy.python.postprocess import build_postprocess
class ClsPredictor(Predictor):
def __init__(self, config):
super().__init__(config["Global"])
self.preprocess_ops = []
self.postprocess = None
if "PreProcess" in config:
if "transform_ops" in config["PreProcess"]:
self.preprocess_ops = create_operators(config["PreProcess"][
"transform_ops"])
if "PostProcess" in config:
self.postprocess = build_postprocess(config["PostProcess"])
# for whole_chain project to test each repo of paddle
self.benchmark = config["Global"].get("benchmark", False)
if self.benchmark:
import auto_log
import os
pid = os.getpid()
size = config["PreProcess"]["transform_ops"][1]["CropImage"][
"size"]
if config["Global"].get("use_int8", False):
precision = "int8"
elif config["Global"].get("use_fp16", False):
precision = "fp16"
else:
precision = "fp32"
self.auto_logger = auto_log.AutoLogger(
model_name=config["Global"].get("model_name", "cls"),
model_precision=precision,
batch_size=config["Global"].get("batch_size", 1),
data_shape=[3, size, size],
save_path=config["Global"].get("save_log_path",
"./auto_log.log"),
inference_config=self.config,
pids=pid,
process_name=None,
gpu_ids=None,
time_keys=[
'preprocess_time', 'inference_time', 'postprocess_time'
],
warmup=2)
def predict(self, images):
use_onnx = self.args.get("use_onnx", False)
if not use_onnx:
input_names = self.predictor.get_input_names()
input_tensor = self.predictor.get_input_handle(input_names[0])
output_names = self.predictor.get_output_names()
output_tensor = self.predictor.get_output_handle(output_names[0])
else:
input_names = self.predictor.get_inputs()[0].name
output_names = self.predictor.get_outputs()[0].name
if self.benchmark:
self.auto_logger.times.start()
if not isinstance(images, (list, )):
images = [images]
for idx in range(len(images)):
for ops in self.preprocess_ops:
images[idx] = ops(images[idx])
image = np.array(images)
if self.benchmark:
self.auto_logger.times.stamp()
if not use_onnx:
input_tensor.copy_from_cpu(image)
self.predictor.run()
batch_output = output_tensor.copy_to_cpu()
else:
batch_output = self.predictor.run(
output_names=[output_names],
input_feed={input_names: image})[0]
if self.benchmark:
self.auto_logger.times.stamp()
if self.postprocess is not None:
batch_output = self.postprocess(batch_output)
if self.benchmark:
self.auto_logger.times.end(stamp=True)
return batch_output
def main(config):
cls_predictor = ClsPredictor(config)
image_list = get_image_list(config["Global"]["infer_imgs"])
batch_imgs = []
batch_names = []
cnt = 0
for idx, img_path in enumerate(image_list):
img = cv2.imread(img_path)
if img is None:
logger.warning(
"Image file failed to read and has been skipped. The path: {}".
format(img_path))
else:
img = img[:, :, ::-1]
batch_imgs.append(img)
img_name = os.path.basename(img_path)
batch_names.append(img_name)
cnt += 1
if cnt % config["Global"]["batch_size"] == 0 or (idx + 1
) == len(image_list):
if len(batch_imgs) == 0:
continue
batch_results = cls_predictor.predict(batch_imgs)
for number, result_dict in enumerate(batch_results):
if "PersonAttribute" in config[
"PostProcess"] or "VehicleAttribute" in config[
"PostProcess"]:
filename = batch_names[number]
print("{}:\t {}".format(filename, result_dict))
else:
filename = batch_names[number]
clas_ids = result_dict["class_ids"]
scores_str = "[{}]".format(", ".join("{:.2f}".format(
r) for r in result_dict["scores"]))
label_names = result_dict["label_names"]
print(
"{}:\tclass id(s): {}, score(s): {}, label_name(s): {}".
format(filename, clas_ids, scores_str, label_names))
batch_imgs = []
batch_names = []
if cls_predictor.benchmark:
cls_predictor.auto_logger.report()
return
if __name__ == "__main__":
args = config.parse_args()
config = config.get_config(args.config, overrides=args.override, show=True)
main(config)