forked from thangvubk/SphereRPN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_semantic_instance.py
397 lines (357 loc) · 18.5 KB
/
evaluate_semantic_instance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Adapted from https://github.com/ScanNet/ScanNet/blob/master/BenchmarkScripts/3d_evaluation/evaluate_semantic_instance.py # noqa E501
# Modified by Thang Vu
from copy import deepcopy
import numpy as np
from tqdm import tqdm
from util_3d import get_instances
class ScanNetEval(object):
valid_class_labels = [
'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture',
'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub',
'otherfurniture'
]
valid_class_ids = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
valid_class_ids = np.arange(18) + 1
id2label = {}
label2id = {}
for i in range(len(valid_class_ids)):
label2id[valid_class_labels[i]] = valid_class_ids[i]
id2label[valid_class_ids[i]] = valid_class_labels[i]
def __init__(self, iou_type=None, use_label=True):
self.ious = np.append(np.arange(0.5, 0.95, 0.05), 0.25)
self.min_region_sizes = np.array([100])
self.distance_threshes = np.array([float('inf')])
self.distance_confs = np.array([-float('inf')])
self.iou_type = iou_type
self.use_label = use_label
if self.use_label:
self.eval_class_labels = self.valid_class_labels
else:
self.eval_class_labels = ['class_agnostic']
def evaluate_matches(self, matches):
ious = self.ious
min_region_sizes = [self.min_region_sizes[0]]
dist_threshes = [self.distance_threshes[0]]
dist_confs = [self.distance_confs[0]]
# results: class x iou
ap = np.zeros((len(dist_threshes), len(self.eval_class_labels), len(ious)), np.float)
rc = np.zeros((len(dist_threshes), len(self.eval_class_labels), len(ious)), np.float)
for di, (min_region_size, distance_thresh,
distance_conf) in enumerate(zip(min_region_sizes, dist_threshes, dist_confs)):
for oi, iou_th in enumerate(ious):
pred_visited = {}
for m in matches:
for p in matches[m]['pred']:
for label_name in self.eval_class_labels:
for p in matches[m]['pred'][label_name]:
if 'filename' in p:
pred_visited[p['filename']] = False
for li, label_name in enumerate(self.eval_class_labels):
y_true = np.empty(0)
y_score = np.empty(0)
hard_false_negatives = 0
has_gt = False
has_pred = False
for m in matches:
pred_instances = matches[m]['pred'][label_name]
gt_instances = matches[m]['gt'][label_name]
# filter groups in ground truth
gt_instances = [
gt for gt in gt_instances
if gt['instance_id'] >= 1000 and gt['vert_count'] >= min_region_size and
gt['med_dist'] <= distance_thresh and gt['dist_conf'] >= distance_conf
]
if gt_instances:
has_gt = True
if pred_instances:
has_pred = True
cur_true = np.ones(len(gt_instances))
cur_score = np.ones(len(gt_instances)) * (-float('inf'))
cur_match = np.zeros(len(gt_instances), dtype=np.bool)
# collect matches
for (gti, gt) in enumerate(gt_instances):
found_match = False
for pred in gt['matched_pred']:
# greedy assignments
if pred_visited[pred['filename']]:
continue
# TODO change to use compact iou
iou = pred['iou']
if iou > iou_th:
confidence = pred['confidence']
# if already have a prediction for this gt,
# the prediction with the lower score is automatically a FP
if cur_match[gti]:
max_score = max(cur_score[gti], confidence)
min_score = min(cur_score[gti], confidence)
cur_score[gti] = max_score
# append false positive
cur_true = np.append(cur_true, 0)
cur_score = np.append(cur_score, min_score)
cur_match = np.append(cur_match, True)
# otherwise set score
else:
found_match = True
cur_match[gti] = True
cur_score[gti] = confidence
pred_visited[pred['filename']] = True
if not found_match:
hard_false_negatives += 1
# remove non-matched ground truth instances
cur_true = cur_true[cur_match == True] # noqa E712
cur_score = cur_score[cur_match == True] # noqa E712
# collect non-matched predictions as false positive
for pred in pred_instances:
found_gt = False
for gt in pred['matched_gt']:
iou = gt['iou']
if iou > iou_th:
found_gt = True
break
if not found_gt:
num_ignore = pred['void_intersection']
for gt in pred['matched_gt']:
# group?
if gt['instance_id'] < 1000:
num_ignore += gt['intersection']
# small ground truth instances
if gt['vert_count'] < min_region_size or gt[
'med_dist'] > distance_thresh or gt[
'dist_conf'] < distance_conf:
num_ignore += gt['intersection']
proportion_ignore = float(num_ignore) / pred['vert_count']
# if not ignored append false positive
if proportion_ignore <= iou_th:
cur_true = np.append(cur_true, 0)
confidence = pred['confidence']
cur_score = np.append(cur_score, confidence)
# append to overall results
y_true = np.append(y_true, cur_true)
y_score = np.append(y_score, cur_score)
# compute average precision
if has_gt and has_pred:
# compute precision recall curve first
# sorting and cumsum
score_arg_sort = np.argsort(y_score)
y_score_sorted = y_score[score_arg_sort]
y_true_sorted = y_true[score_arg_sort]
y_true_sorted_cumsum = np.cumsum(y_true_sorted)
# unique thresholds
(thresholds, unique_indices) = np.unique(y_score_sorted, return_index=True)
num_prec_recall = len(unique_indices) + 1
# prepare precision recall
num_examples = len(y_score_sorted)
num_true_examples = y_true_sorted_cumsum[-1]
precision = np.zeros(num_prec_recall)
recall = np.zeros(num_prec_recall)
# deal with the first point
y_true_sorted_cumsum = np.append(y_true_sorted_cumsum, 0)
# deal with remaining
for idx_res, idx_scores in enumerate(unique_indices):
cumsum = y_true_sorted_cumsum[idx_scores - 1]
tp = num_true_examples - cumsum
fp = num_examples - idx_scores - tp
fn = cumsum + hard_false_negatives
p = float(tp) / (tp + fp)
r = float(tp) / (tp + fn)
precision[idx_res] = p
recall[idx_res] = r
# recall is the first point on recall curve
rc_current = recall[0]
# first point in curve is artificial
precision[-1] = 1.
recall[-1] = 0.
# compute average of precision-recall curve
recall_for_conv = np.copy(recall)
recall_for_conv = np.append(recall_for_conv[0], recall_for_conv)
recall_for_conv = np.append(recall_for_conv, 0.)
stepWidths = np.convolve(recall_for_conv, [-0.5, 0, 0.5], 'valid')
# integrate is now simply a dot product
ap_current = np.dot(precision, stepWidths)
elif has_gt:
ap_current = 0.0
rc_current = 0.0
else:
ap_current = float('nan')
rc_current = float('nan')
ap[di, li, oi] = ap_current
rc[di, li, oi] = rc_current
return ap, rc
def compute_averages(self, aps, rcs):
d_inf = 0
o50 = np.where(np.isclose(self.ious, 0.5))
o25 = np.where(np.isclose(self.ious, 0.25))
oAllBut25 = np.where(np.logical_not(np.isclose(self.ious, 0.25)))
avg_dict = {}
# avg_dict['all_ap'] = np.nanmean(aps[ d_inf,:,: ])
avg_dict['all_ap'] = np.nanmean(aps[d_inf, :, oAllBut25])
avg_dict['all_ap_50%'] = np.nanmean(aps[d_inf, :, o50])
avg_dict['all_ap_25%'] = np.nanmean(aps[d_inf, :, o25])
avg_dict['all_rc'] = np.nanmean(rcs[d_inf, :, oAllBut25])
avg_dict['all_rc_50%'] = np.nanmean(rcs[d_inf, :, o50])
avg_dict['all_rc_25%'] = np.nanmean(rcs[d_inf, :, o25])
avg_dict['classes'] = {}
for (li, label_name) in enumerate(self.eval_class_labels):
avg_dict['classes'][label_name] = {}
# avg_dict['classes'][label_name]['ap'] = np.average(aps[ d_inf,li, :])
avg_dict['classes'][label_name]['ap'] = np.average(aps[d_inf, li, oAllBut25])
avg_dict['classes'][label_name]['ap50%'] = np.average(aps[d_inf, li, o50])
avg_dict['classes'][label_name]['ap25%'] = np.average(aps[d_inf, li, o25])
avg_dict['classes'][label_name]['rc'] = np.average(rcs[d_inf, li, oAllBut25])
avg_dict['classes'][label_name]['rc50%'] = np.average(rcs[d_inf, li, o50])
avg_dict['classes'][label_name]['rc25%'] = np.average(rcs[d_inf, li, o25])
return avg_dict
def assign_instances_for_scan(self, preds, gts):
# get gt instances, only consider the valid class labels even in class agnostic setting
gt_instances = get_instances(gts, self.valid_class_ids, self.valid_class_labels,
self.id2label)
# associate
if self.use_label:
gt2pred = deepcopy(gt_instances)
for label in gt2pred:
for gt in gt2pred[label]:
gt['matched_pred'] = []
else:
gt2pred = {}
agnostic_instances = []
# concat all the instances label to agnostic label
for _, instances in gt_instances.items():
agnostic_instances += deepcopy(instances)
for gt in agnostic_instances:
gt['matched_pred'] = []
gt2pred[self.eval_class_labels[0]] = agnostic_instances
pred2gt = {}
for label in self.eval_class_labels:
pred2gt[label] = []
num_pred_instances = 0
# mask of void labels in the groundtruth
bool_void = np.logical_not(np.in1d(gts // 1000, self.valid_class_ids))
# go thru all prediction masks
for pred in preds:
if self.use_label:
label_id = pred['label_id']
if label_id not in self.id2label:
continue
label_name = self.id2label[label_id]
else:
label_name = self.eval_class_labels[0] # class agnostic label
conf = pred['conf']
pred_mask = pred['pred_mask']
assert pred_mask.shape[0] == gts.shape[0]
# convert to binary
pred_mask = np.not_equal(pred_mask, 0)
num = np.count_nonzero(pred_mask)
if num < self.min_region_sizes[0]:
continue # skip if empty
pred_instance = {}
pred_instance['filename'] = '{}_{}'.format(pred['scan_id'], num_pred_instances) # dummy
pred_instance['pred_id'] = num_pred_instances
pred_instance['label_id'] = label_id if self.use_label else None
pred_instance['vert_count'] = num
pred_instance['confidence'] = conf
pred_instance['void_intersection'] = np.count_nonzero(
np.logical_and(bool_void, pred_mask))
# matched gt instances
matched_gt = []
# go thru all gt instances with matching label
for (gt_num, gt_inst) in enumerate(gt2pred[label_name]):
intersection = np.count_nonzero(
np.logical_and(gts == gt_inst['instance_id'], pred_mask))
if intersection > 0:
gt_copy = gt_inst.copy()
pred_copy = pred_instance.copy()
gt_copy['intersection'] = intersection
pred_copy['intersection'] = intersection
iou = (
float(intersection) /
(gt_copy['vert_count'] + pred_copy['vert_count'] - intersection))
gt_copy['iou'] = iou
pred_copy['iou'] = iou
matched_gt.append(gt_copy)
gt2pred[label_name][gt_num]['matched_pred'].append(pred_copy)
pred_instance['matched_gt'] = matched_gt
num_pred_instances += 1
pred2gt[label_name].append(pred_instance)
return gt2pred, pred2gt
def print_results(self, avgs):
sep = ''
col1 = ':'
lineLen = 64
print()
print('#' * lineLen)
line = ''
line += '{:<15}'.format('what') + sep + col1
line += '{:>8}'.format('AP') + sep
line += '{:>8}'.format('AP_50%') + sep
line += '{:>8}'.format('AP_25%') + sep
line += '{:>8}'.format('AR') + sep
line += '{:>8}'.format('RC_50%') + sep
line += '{:>8}'.format('RC_25%') + sep
print(line)
print('#' * lineLen)
for (li, label_name) in enumerate(self.eval_class_labels):
ap_avg = avgs['classes'][label_name]['ap']
ap_50o = avgs['classes'][label_name]['ap50%']
ap_25o = avgs['classes'][label_name]['ap25%']
rc_avg = avgs['classes'][label_name]['rc']
rc_50o = avgs['classes'][label_name]['rc50%']
rc_25o = avgs['classes'][label_name]['rc25%']
line = '{:<15}'.format(label_name) + sep + col1
line += sep + '{:>8.3f}'.format(ap_avg) + sep
line += sep + '{:>8.3f}'.format(ap_50o) + sep
line += sep + '{:>8.3f}'.format(ap_25o) + sep
line += sep + '{:>8.3f}'.format(rc_avg) + sep
line += sep + '{:>8.3f}'.format(rc_50o) + sep
line += sep + '{:>8.3f}'.format(rc_25o) + sep
print(line)
all_ap_avg = avgs['all_ap']
all_ap_50o = avgs['all_ap_50%']
all_ap_25o = avgs['all_ap_25%']
all_rc_avg = avgs['all_rc']
all_rc_50o = avgs['all_rc_50%']
all_rc_25o = avgs['all_rc_25%']
print('-' * lineLen)
line = '{:<15}'.format('average') + sep + col1
line += '{:>8.3f}'.format(all_ap_avg) + sep
line += '{:>8.3f}'.format(all_ap_50o) + sep
line += '{:>8.3f}'.format(all_ap_25o) + sep
line += '{:>8.3f}'.format(all_rc_avg) + sep
line += '{:>8.3f}'.format(all_rc_50o) + sep
line += '{:>8.3f}'.format(all_rc_25o) + sep
print(line)
print('#' * lineLen)
print()
def write_result_file(self, avgs, filename):
_SPLITTER = ','
with open(filename, 'w') as f:
f.write(_SPLITTER.join(['class', 'class id', 'ap', 'ap50', 'ap25']) + '\n')
for class_name in self.eval_class_labels:
ap = avgs['classes'][class_name]['ap']
ap50 = avgs['classes'][class_name]['ap50%']
ap25 = avgs['classes'][class_name]['ap25%']
f.write(_SPLITTER.join([str(x) for x in [class_name, ap, ap50, ap25]]) + '\n')
def evaluate(self, pred_list, gt_list):
"""
Args:
pred_list: for each scan:
for each instance
instance = dict(scan_id, label_id, mask, confidence)
gt_list: for each scan:
for each point:
gt_id = class_id * 1000 + instance_id
"""
print('evaluating', len(pred_list), 'scans...')
matches = {}
for i, (preds, gts) in enumerate(tqdm(zip(pred_list, gt_list))):
gt2pred, pred2gt = self.assign_instances_for_scan(preds, gts)
# assign gt to predictions
matches_key = f'gt_{i}'
matches[matches_key] = {}
matches[matches_key]['gt'] = gt2pred
matches[matches_key]['pred'] = pred2gt
print()
ap_scores, rc_scores = self.evaluate_matches(matches)
avgs = self.compute_averages(ap_scores, rc_scores)
# print
self.print_results(avgs)
return avgs