You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I tried to use AutoEnzyme as an optimizer to build a neural network to predict parameters for ODEs following the example of DiffEqFlux, but it turned out to return an Enzyme internal error and a bunch of LLVM computations.
using Lux, DiffEqFlux, OrdinaryDiffEq, Plots, Printf, Statistics
using ComponentArrays
using Optimization, OptimizationOptimisers
using Enzyme
using Dates
using Random
using StaticArrays
function evolve!(dc, c, p, t)
p1 = p[1]
p2 = p[2]
dc .= c .* p2 * p1
end
function simulate(i1, i2, a, b, t_span)
p2 = exp(-i2 * a)
p1 = i1 * b
p = (p1, p2)
c0 = [1.0 0.0; 1.0 0.0]
prob = ODEProblem(evolve!, c0, t_span, p)
sol = solve(prob, Euler(), save_everystep=false, dt = 0.5)
return Array(sol[end])
end
rng = Xoshiro(0)
b = [0.0 1.0; 1.0 0.0]
a = 0.6
n = length(b[1, :])
i1 = 0.18
i2 = 2.5
timespan = (0.0, 5.0)
ans = simulate(i1, i2, a, b, timespan)
display(ans)
inputs = [i1, i2]
input_size = length(inputs)
output_size = length(a) + length(b)
nn = Chain(
Dense(input_size, input_size*3*n, tanh),
Dense(input_size*3*n, output_size*2, tanh),
Dense(output_size*2, output_size, sigmoid)
)
u, st = Lux.setup(rng, nn)
function predict_neuralode(u)
# Get parameters from the neural network
output, outst = nn(inputs, u, st)
# Segregate the output
p_a = output[1]
pp_b = output[length(a)+1:end]
p_b = zeros(n, n)
index = 1
for i in 1:n
for j in 1:n
p_b[i, j] = pp_b[index]
index += 1
end
end
nn_output = [p_a, p_b]
println("nn_output: ", nn_output)
pred = simulate(i1, i2, p_a, p_b, timespan)
return Array(pred)
end
function loss_neuralode(ans, u)
pred = predict_neuralode(u)
loss = sum(abs2, ans .- pred)
return loss, pred
end
loss, pred = loss_neuralode(ans, u)
loss_values = Float64[]
callback = function (p, l, pred; doplot = false)
println(l)
push!(loss_values, l)
end
pinit = ComponentArray(u)
callback(pinit, loss_neuralode(ans, pinit)...)
adtype = Optimization.AutoEnzyme()
optf = Optimization.OptimizationFunction((u,_) -> loss_neuralode(ans, u), adtype)
optprob = Optimization.OptimizationProblem(optf, pinit)
result_neuralode = Optimization.solve(
optprob, OptimizationOptimisers.Adam(0.02); callback = callback, maxiters = 50)
I also tried to run the example by replacing the Zygote and AutoZygote with Enzyme and AutoEnzyme, but it still returned the same error. They happened on both Mac and Windows systems.
Hi,
I tried to use AutoEnzyme as an optimizer to build a neural network to predict parameters for ODEs following the example of DiffEqFlux, but it turned out to return an Enzyme internal error and a bunch of LLVM computations.
The error log: error_log_2024-11-19_15-56-09.txt
The stacktrace: Stacktrace.txt
I also tried to run the example by replacing the Zygote and AutoZygote with Enzyme and AutoEnzyme, but it still returned the same error. They happened on both Mac and Windows systems.
Julia Version 1.11.1
Packages:
[b0b7db55] ComponentArrays v0.15.18
[aae7a2af] DiffEqFlux v4.1.0
[7da242da] Enzyme v0.13.14
⌅ [d9f16b24] Functors v0.4.12
[e6f89c97] LoggingExtras v1.1.0
[b2108857] Lux v1.2.3
[7f7a1694] Optimization v4.0.5
[42dfb2eb] OptimizationOptimisers v0.3.4
[1dea7af3] OrdinaryDiffEq v6.90.1
[91a5bcdd] Plots v1.40.9
[90137ffa] StaticArrays v1.9.8
[10745b16] Statistics v1.11.1
[e88e6eb3] Zygote v0.6.73
[ade2ca70] Dates v1.11.0
[56ddb016] Logging v1.11.0
[de0858da] Printf v1.11.0
[9a3f8284] Random v1.11.0
The text was updated successfully, but these errors were encountered: