forked from yzcjtr/GeoNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeonet_model.py
334 lines (271 loc) · 16 KB
/
geonet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from __future__ import division
import os
import time
import math
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from geonet_nets import *
from utils import *
class GeoNetModel(object):
def __init__(self, opt, tgt_image, src_image_stack, intrinsics):
self.opt = opt
self.tgt_image = self.preprocess_image(tgt_image)
self.src_image_stack = self.preprocess_image(src_image_stack)
self.intrinsics = intrinsics
self.build_model()
if not opt.mode in ['train_rigid', 'train_flow']:
return
self.build_losses()
def build_model(self):
opt = self.opt
self.tgt_image_pyramid = self.scale_pyramid(self.tgt_image, opt.num_scales)
self.tgt_image_tile_pyramid = [tf.tile(img, [opt.num_source, 1, 1, 1]) \
for img in self.tgt_image_pyramid]
# src images concated along batch dimension
if self.src_image_stack != None:
self.src_image_concat = tf.concat([self.src_image_stack[:,:,:,3*i:3*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_image_concat_pyramid = self.scale_pyramid(self.src_image_concat, opt.num_scales)
if opt.add_dispnet:
self.build_dispnet()
if opt.add_posenet:
self.build_posenet()
if opt.add_dispnet and opt.add_posenet:
self.build_rigid_flow_warping()
if opt.add_flownet:
self.build_flownet()
if opt.mode == 'train_flow':
self.build_full_flow_warping()
if opt.flow_consistency_weight > 0:
self.build_flow_consistency()
def build_dispnet(self):
opt = self.opt
# build dispnet_inputs
if opt.mode == 'test_depth':
# for test_depth mode we only predict the depth of the target image
self.dispnet_inputs = self.tgt_image
else:
# multiple depth predictions; tgt: disp[:bs,:,:,:] src.i: disp[bs*(i+1):bs*(i+2),:,:,:]
self.dispnet_inputs = self.tgt_image
for i in range(opt.num_source):
self.dispnet_inputs = tf.concat([self.dispnet_inputs, self.src_image_stack[:,:,:,3*i:3*(i+1)]], axis=0)
# build dispnet
self.pred_disp = disp_net(opt, self.dispnet_inputs)
if opt.scale_normalize:
# As proposed in https://arxiv.org/abs/1712.00175, this can
# bring improvement in depth estimation, but not included in our paper.
self.pred_disp = [self.spatial_normalize(disp) for disp in self.pred_disp]
self.pred_depth = [1./d for d in self.pred_disp]
def build_posenet(self):
opt = self.opt
# build posenet_inputs
self.posenet_inputs = tf.concat([self.tgt_image, self.src_image_stack], axis=3)
# build posenet
self.pred_poses = pose_net(opt, self.posenet_inputs)
def build_rigid_flow_warping(self):
opt = self.opt
bs = opt.batch_size
# build rigid flow (fwd: tgt->src, bwd: src->tgt)
self.fwd_rigid_flow_pyramid = []
self.bwd_rigid_flow_pyramid = []
for s in range(opt.num_scales):
for i in range(opt.num_source):
fwd_rigid_flow = compute_rigid_flow(tf.squeeze(self.pred_depth[s][:bs], axis=3),
self.pred_poses[:,i,:], self.intrinsics[:,s,:,:], False)
bwd_rigid_flow = compute_rigid_flow(tf.squeeze(self.pred_depth[s][bs*(i+1):bs*(i+2)], axis=3),
self.pred_poses[:,i,:], self.intrinsics[:,s,:,:], True)
if not i:
fwd_rigid_flow_concat = fwd_rigid_flow
bwd_rigid_flow_concat = bwd_rigid_flow
else:
fwd_rigid_flow_concat = tf.concat([fwd_rigid_flow_concat, fwd_rigid_flow], axis=0)
bwd_rigid_flow_concat = tf.concat([bwd_rigid_flow_concat, bwd_rigid_flow], axis=0)
self.fwd_rigid_flow_pyramid.append(fwd_rigid_flow_concat)
self.bwd_rigid_flow_pyramid.append(bwd_rigid_flow_concat)
# warping by rigid flow
self.fwd_rigid_warp_pyramid = [flow_warp(self.src_image_concat_pyramid[s], self.fwd_rigid_flow_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_rigid_warp_pyramid = [flow_warp(self.tgt_image_tile_pyramid[s], self.bwd_rigid_flow_pyramid[s]) \
for s in range(opt.num_scales)]
# compute reconstruction error
self.fwd_rigid_error_pyramid = [self.image_similarity(self.fwd_rigid_warp_pyramid[s], self.tgt_image_tile_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_rigid_error_pyramid = [self.image_similarity(self.bwd_rigid_warp_pyramid[s], self.src_image_concat_pyramid[s]) \
for s in range(opt.num_scales)]
def build_flownet(self):
opt = self.opt
# build flownet_inputs
self.fwd_flownet_inputs = tf.concat([self.tgt_image_tile_pyramid[0], self.src_image_concat_pyramid[0]], axis=3)
self.bwd_flownet_inputs = tf.concat([self.src_image_concat_pyramid[0], self.tgt_image_tile_pyramid[0]], axis=3)
if opt.flownet_type == 'residual':
self.fwd_flownet_inputs = tf.concat([self.fwd_flownet_inputs,
self.fwd_rigid_warp_pyramid[0],
self.fwd_rigid_flow_pyramid[0],
self.L2_norm(self.fwd_rigid_error_pyramid[0])], axis=3)
self.bwd_flownet_inputs = tf.concat([self.bwd_flownet_inputs,
self.bwd_rigid_warp_pyramid[0],
self.bwd_rigid_flow_pyramid[0],
self.L2_norm(self.bwd_rigid_error_pyramid[0])], axis=3)
self.flownet_inputs = tf.concat([self.fwd_flownet_inputs, self.bwd_flownet_inputs], axis=0)
# build flownet
self.pred_flow = flow_net(opt, self.flownet_inputs)
# unnormalize pyramid flow back into pixel metric
for s in range(opt.num_scales):
curr_bs, curr_h, curr_w, _ = self.pred_flow[s].get_shape().as_list()
scale_factor = tf.cast(tf.constant([curr_w, curr_h], shape=[1,1,1,2]), 'float32')
scale_factor = tf.tile(scale_factor, [curr_bs, curr_h, curr_w, 1])
self.pred_flow[s] = self.pred_flow[s] * scale_factor
# split forward/backward flows
self.fwd_full_flow_pyramid = [self.pred_flow[s][:opt.batch_size*opt.num_source] for s in range(opt.num_scales)]
self.bwd_full_flow_pyramid = [self.pred_flow[s][opt.batch_size*opt.num_source:] for s in range(opt.num_scales)]
# residual flow postprocessing
if opt.flownet_type == 'residual':
self.fwd_full_flow_pyramid = [self.fwd_full_flow_pyramid[s] + self.fwd_rigid_flow_pyramid[s] for s in range(opt.num_scales)]
self.bwd_full_flow_pyramid = [self.bwd_full_flow_pyramid[s] + self.bwd_rigid_flow_pyramid[s] for s in range(opt.num_scales)]
def build_full_flow_warping(self):
opt = self.opt
# warping by full flow
self.fwd_full_warp_pyramid = [flow_warp(self.src_image_concat_pyramid[s], self.fwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_full_warp_pyramid = [flow_warp(self.tgt_image_tile_pyramid[s], self.bwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
# compute reconstruction error
self.fwd_full_error_pyramid = [self.image_similarity(self.fwd_full_warp_pyramid[s], self.tgt_image_tile_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_full_error_pyramid = [self.image_similarity(self.bwd_full_warp_pyramid[s], self.src_image_concat_pyramid[s]) \
for s in range(opt.num_scales)]
def build_flow_consistency(self):
opt = self.opt
# warp pyramid full flow
self.bwd2fwd_flow_pyramid = [flow_warp(self.bwd_full_flow_pyramid[s], self.fwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
self.fwd2bwd_flow_pyramid = [flow_warp(self.fwd_full_flow_pyramid[s], self.bwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
# calculate flow consistency
self.fwd_flow_diff_pyramid = [tf.abs(self.bwd2fwd_flow_pyramid[s] + self.fwd_full_flow_pyramid[s]) for s in range(opt.num_scales)]
self.bwd_flow_diff_pyramid = [tf.abs(self.fwd2bwd_flow_pyramid[s] + self.bwd_full_flow_pyramid[s]) for s in range(opt.num_scales)]
# build flow consistency condition
self.fwd_consist_bound = [opt.flow_consistency_beta * self.L2_norm(self.fwd_full_flow_pyramid[s]) * 2**s for s in range(opt.num_scales)]
self.bwd_consist_bound = [opt.flow_consistency_beta * self.L2_norm(self.bwd_full_flow_pyramid[s]) * 2**s for s in range(opt.num_scales)]
self.fwd_consist_bound = [tf.stop_gradient(tf.maximum(v, opt.flow_consistency_alpha)) for v in self.fwd_consist_bound]
self.bwd_consist_bound = [tf.stop_gradient(tf.maximum(v, opt.flow_consistency_alpha)) for v in self.bwd_consist_bound]
# build flow consistency mask
self.noc_masks_src = [tf.cast(tf.less(self.L2_norm(self.bwd_flow_diff_pyramid[s]) * 2**s,
self.bwd_consist_bound[s]), tf.float32) for s in range(opt.num_scales)]
self.noc_masks_tgt = [tf.cast(tf.less(self.L2_norm(self.fwd_flow_diff_pyramid[s]) * 2**s,
self.fwd_consist_bound[s]), tf.float32) for s in range(opt.num_scales)]
def build_losses(self):
opt = self.opt
bs = opt.batch_size
rigid_warp_loss = 0
disp_smooth_loss = 0
flow_warp_loss = 0
flow_smooth_loss = 0
flow_consistency_loss = 0
for s in range(opt.num_scales):
# rigid_warp_loss
if opt.mode == 'train_rigid' and opt.rigid_warp_weight > 0:
rigid_warp_loss += opt.rigid_warp_weight*opt.num_source/2 * \
(tf.reduce_mean(self.fwd_rigid_error_pyramid[s]) + \
tf.reduce_mean(self.bwd_rigid_error_pyramid[s]))
# disp_smooth_loss
if opt.mode == 'train_rigid' and opt.disp_smooth_weight > 0:
disp_smooth_loss += opt.disp_smooth_weight/(2**s) * self.compute_smooth_loss(self.pred_disp[s],
tf.concat([self.tgt_image_pyramid[s], self.src_image_concat_pyramid[s]], axis=0))
# flow_warp_loss
if opt.mode == 'train_flow' and opt.flow_warp_weight > 0:
if opt.flow_consistency_weight == 0:
flow_warp_loss += opt.flow_warp_weight*opt.num_source/2 * \
(tf.reduce_mean(self.fwd_full_error_pyramid[s]) + tf.reduce_mean(self.bwd_full_error_pyramid[s]))
else:
flow_warp_loss += opt.flow_warp_weight*opt.num_source/2 * \
(tf.reduce_sum(tf.reduce_mean(self.fwd_full_error_pyramid[s], axis=3, keep_dims=True) * \
self.noc_masks_tgt[s]) / tf.reduce_sum(self.noc_masks_tgt[s]) + \
tf.reduce_sum(tf.reduce_mean(self.bwd_full_error_pyramid[s], axis=3, keep_dims=True) * \
self.noc_masks_src[s]) / tf.reduce_sum(self.noc_masks_src[s]))
# flow_smooth_loss
if opt.mode == 'train_flow' and opt.flow_smooth_weight > 0:
flow_smooth_loss += opt.flow_smooth_weight/(2**(s+1)) * \
(self.compute_flow_smooth_loss(self.fwd_full_flow_pyramid[s], self.tgt_image_tile_pyramid[s]) +
self.compute_flow_smooth_loss(self.bwd_full_flow_pyramid[s], self.src_image_concat_pyramid[s]))
# flow_consistency_loss
if opt.mode == 'train_flow' and opt.flow_consistency_weight > 0:
flow_consistency_loss += opt.flow_consistency_weight/2 * \
(tf.reduce_sum(tf.reduce_mean(self.fwd_flow_diff_pyramid[s] , axis=3, keep_dims=True) * \
self.noc_masks_tgt[s]) / tf.reduce_sum(self.noc_masks_tgt[s]) + \
tf.reduce_sum(tf.reduce_mean(self.bwd_flow_diff_pyramid[s] , axis=3, keep_dims=True) * \
self.noc_masks_src[s]) / tf.reduce_sum(self.noc_masks_src[s]))
regularization_loss = tf.add_n(tf.losses.get_regularization_losses())
self.total_loss = 0 # regularization_loss
if opt.mode == 'train_rigid':
self.total_loss += rigid_warp_loss + disp_smooth_loss
if opt.mode == 'train_flow':
self.total_loss += flow_warp_loss + flow_smooth_loss + flow_consistency_loss
def SSIM(self, x, y):
C1 = 0.01 ** 2
C2 = 0.03 ** 2
mu_x = slim.avg_pool2d(x, 3, 1, 'SAME')
mu_y = slim.avg_pool2d(y, 3, 1, 'SAME')
sigma_x = slim.avg_pool2d(x ** 2, 3, 1, 'SAME') - mu_x ** 2
sigma_y = slim.avg_pool2d(y ** 2, 3, 1, 'SAME') - mu_y ** 2
sigma_xy = slim.avg_pool2d(x * y , 3, 1, 'SAME') - mu_x * mu_y
SSIM_n = (2 * mu_x * mu_y + C1) * (2 * sigma_xy + C2)
SSIM_d = (mu_x ** 2 + mu_y ** 2 + C1) * (sigma_x + sigma_y + C2)
SSIM = SSIM_n / SSIM_d
return tf.clip_by_value((1 - SSIM) / 2, 0, 1)
def image_similarity(self, x, y):
return self.opt.alpha_recon_image * self.SSIM(x, y) + (1-self.opt.alpha_recon_image) * tf.abs(x-y)
def L2_norm(self, x, axis=3, keep_dims=True):
curr_offset = 1e-10
l2_norm = tf.norm(tf.abs(x) + curr_offset, axis=axis, keep_dims=keep_dims)
return l2_norm
def spatial_normalize(self, disp):
_, curr_h, curr_w, curr_c = disp.get_shape().as_list()
disp_mean = tf.reduce_mean(disp, axis=[1,2,3], keep_dims=True)
disp_mean = tf.tile(disp_mean, [1, curr_h, curr_w, curr_c])
return disp/disp_mean
def scale_pyramid(self, img, num_scales):
if img == None:
return None
else:
scaled_imgs = [img]
_, h, w, _ = img.get_shape().as_list()
for i in range(num_scales - 1):
ratio = 2 ** (i + 1)
nh = int(h / ratio)
nw = int(w / ratio)
scaled_imgs.append(tf.image.resize_area(img, [nh, nw]))
return scaled_imgs
def gradient_x(self, img):
gx = img[:,:,:-1,:] - img[:,:,1:,:]
return gx
def gradient_y(self, img):
gy = img[:,:-1,:,:] - img[:,1:,:,:]
return gy
def compute_smooth_loss(self, disp, img):
disp_gradients_x = self.gradient_x(disp)
disp_gradients_y = self.gradient_y(disp)
image_gradients_x = self.gradient_x(img)
image_gradients_y = self.gradient_y(img)
weights_x = tf.exp(-tf.reduce_mean(tf.abs(image_gradients_x), 3, keep_dims=True))
weights_y = tf.exp(-tf.reduce_mean(tf.abs(image_gradients_y), 3, keep_dims=True))
smoothness_x = disp_gradients_x * weights_x
smoothness_y = disp_gradients_y * weights_y
return tf.reduce_mean(tf.abs(smoothness_x)) + tf.reduce_mean(tf.abs(smoothness_y))
def compute_flow_smooth_loss(self, flow, img):
smoothness = 0
for i in range(2):
smoothness += self.compute_smooth_loss(tf.expand_dims(flow[:,:,:,i], -1), img)
return smoothness/2
def preprocess_image(self, image):
# Assuming input image is uint8
if image == None:
return None
else:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
return image * 2. -1.
def deprocess_image(self, image):
# Assuming input image is float32
image = (image + 1.)/2.
return tf.image.convert_image_dtype(image, dtype=tf.uint8)