-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_predict_use_kera.py
71 lines (59 loc) · 2.66 KB
/
face_predict_use_kera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import cv2
import sys
import gc
from train_model import Model
if __name__ == '__main__':
if len(sys.argv) != 2:
print("Usage:%s camera_id\r\n" % (sys.argv[0]))
sys.exit(0)
#加载模型
model = Model()
model.load_model(file_path='./model/me.face.model.h5')
#框住人脸的矩形边框颜色
color = (0, 255, 0)
#捕获指定摄像头的实时视频流
cap = cv2.VideoCapture(int(sys.argv[1]), cv2.CAP_DSHOW)
#人脸识别分类器本地存储路径
cascade_path = cv2.data.haarcascades+"haarcascade_frontalface_alt2.xml"
#循环检测识别人脸
while True:
ok, frame = cap.read() #读取一帧视频
if not ok:
print('no')
break
#图像灰化,降低计算复杂度
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#使用人脸识别分类器,读入分类器
cascade = cv2.CascadeClassifier(cascade_path)
#利用分类器识别出哪个区域为人脸
faceRects = cascade.detectMultiScale(frame_gray, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
if len(faceRects) > 0:
for faceRect in faceRects:
if faceRect[0] < 0 or faceRect[1] < 0 or faceRect[2] < 0 or faceRect[3] < 0:
pass
x, y, w, h = faceRect
image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
faceID = model.face_predict(image)
if faceID == 0:
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, thickness = 2)
cv2.putText(frame, 'Me',
(x + 30, y + 30), #坐标
cv2.FONT_HERSHEY_SIMPLEX, #字体
1, #字号
(255,0,255), #颜色
2) #字的线宽
else:
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, thickness=2)
cv2.putText(frame, 'Other',
(x + 30, y + 30), # 坐标
cv2.FONT_HERSHEY_SIMPLEX, # 字体
1, # 字号
(255, 0, 255), # 颜色
2)
cv2.imshow("Recognise myself", frame)
k = cv2.waitKey(10)
if k & 0xFF == ord('q'):
break
#释放摄像头并销毁所有窗口
cap.release()
cv2.destroyAllWindows()