diff --git a/components/omega/doc/design/OmegaV1GoverningEqns.md b/components/omega/doc/design/OmegaV1GoverningEqns.md index 0e7946cd38fa..2a972016e58d 100644 --- a/components/omega/doc/design/OmegaV1GoverningEqns.md +++ b/components/omega/doc/design/OmegaV1GoverningEqns.md @@ -73,7 +73,7 @@ $$ + \int_{\partial V(t)}\rho({\bf x},t)\, {\bf v}({\bf x},t) \left({\bf v}({\bf x},t) - {\bf v}_r \right) \cdot {\bf n} \, dA \\ & \; \; \; = \int_{V(t)} \rho({\bf x},t) \, {\bf b}({\bf x},t)\, dV -+ \int_{\partial V(t)} {\bf \tau}({\bf n},{\bf x},t) \, dA ++ \int_{\partial V(t)} {\bf \tau}({\bf n},{\bf x},t) \, dA $$ (continuous-momentum) The operator $\frac{d}{dt}$ used here denotes the rate of change within a moving control volume, sometimes referred to as a Reynolds transport derivative. It differs from the partial derivative $\frac{\partial}{\partial t}$, which represents the local rate of change at a fixed point in space (Eulerian frame), and from the material derivative $\frac{D}{Dt}$, which follows an individual fluid parcel (Lagrangian frame). The use of $\frac{d}{dt}$ allows for conservation laws to be expressed in a general framework that includes both stationary and moving control volumes, consistent with the Reynolds transport theorem. @@ -198,7 +198,7 @@ We now express the top and bottom surfaces using the pseudo-height variable $\ti $$ {\bf n}^{\text{top}} \approx (-\nabla \tilde{z}^{\text{top}}, 1), \quad -{\bf n}^{\text{bot}} \approx (-\nabla \tilde{z}^{\text{bot}}, 1) +{\bf n}^{\text{bot}} \approx (\nabla \tilde{z}^{\text{bot}}, -1) $$ (top-bot-normal-pseudo) Here we apply a small-slope approximation, assuming $|\nabla \tilde{z}| \ll 1$, and omit normalization factors for clarity. This approximation retains leading-order effects of slope while simplifying the surface geometry. @@ -295,7 +295,7 @@ $$ &= \int_A \int_{\tilde{z}^{\text{bot}}}^{\tilde{z}^{\text{top}}} {\bf b}_{\perp} \, d\tilde{z} \, dA + -\int_{\partial A} \left( \int_{\tilde{z}^{\text{bot}}}^{\tilde{z}^{\text{top}}} \frac{{\bf \tau}}{\rho} \, d\tilde{z} \right) dl \\ +\int_{\partial A} \left( \int_{\tilde{z}^{\text{bot}}}^{\tilde{z}^{\text{top}}} \frac{{\bf \tau}}{\rho} \, d\tilde{z} \right) {\bf n}_\perp dl \\ &\quad + \int_A \left[ \frac{{\bf \tau}}{\rho} \right]_{\tilde{z} = \tilde{z}^{\text{top}}} \, dA - \int_A \left[ \frac{{\bf \tau}}{\rho} \right]_{\tilde{z} = \tilde{z}^{\text{bot}}} \, dA @@ -501,7 +501,7 @@ $$ & + \int_A \rho_0 \, {\bf u} \left[ \tilde{w}_{tr} - \tilde{\bf u} \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA - \int_A \rho_0 \, {\bf u} \left[ \tilde{w}_{tr} - \tilde{\bf u} \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA \\ & = -\int_A \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \rho_0 \left({\bf f} \times \mathbf{u} + \nabla \Phi \right) \, d\tilde{z} \, dA -- \int_{\partial A} \left( \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \frac{\rho_0 p}{\rho} \, d\tilde{z} \right) dl \\ +- \int_{\partial A} \left( \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \frac{\rho_0 p}{\rho} \, d\tilde{z} \right) {\bf n}_\perp dl \\ & - \int_A \left[ \frac{\rho_0 p}{\rho} \nabla \tilde{z}_k^{\text{top}} \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA + \int_A \left[ \frac{\rho_0 p}{\rho} \nabla \tilde{z}_k^{\text{bot}} \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA. $$ (vh-momentum-forces) @@ -521,7 +521,7 @@ $$ & + \int_A \rho_0 \,\left< {\bf u} \left[ \tilde{w}_{tr} - \tilde{\bf u} \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \right> \, dA - \int_A \rho_0 \, \left< {\bf u} \left[ \tilde{w}_{tr} - \tilde{\bf u} \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \right> \, dA \\ & = -\int_A \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \rho_0 \, \left<\left( {\bf f} \times \mathbf{u} + \nabla \Phi \right) \right> \, d\tilde{z} \, dA -- \int_{\partial A} \left( \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \rho_0 \left< \frac{p}{\rho} \right> \, d\tilde{z} \right) dl \\ +- \int_{\partial A} \left( \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \rho_0 \left< \frac{p}{\rho} \right> \, d\tilde{z} \right) {\bf n}_\perp dl \\ & - \int_A \rho_0 \left[ \left< \frac{p}{\rho} \nabla \tilde{z}_k^{\text{top}} \right> \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA + \int_A \rho_0 \left[ \left< \frac{p}{\rho} \nabla \tilde{z}_k^{\text{bot}} \right> \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA. $$ (vh-momentum-reynolds1) @@ -534,7 +534,7 @@ $$ & + \int_A \rho_0 \, \left[ \left(\left< {\bf u} \right> \left< \tilde{w}_{tr} \right> + \left<{\bf u}^\prime \tilde{w}_{tr}^\prime \right> \right) - \left(\left<{\bf u}\right> \left<\tilde{\bf u}\right> + \left< {\bf u}^\prime \tilde{\bf u}^\prime \right> \right) \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA \\ & - \int_A \rho_0 \, \left[ \left(\left< {\bf u} \right> \left< \tilde{w}_{tr} \right> + \left<{\bf u}^\prime \tilde{w}_{tr}^\prime \right> \right) - \left(\left<{\bf u}\right> \left<\tilde{\bf u}\right> + \left< {\bf u}^\prime \tilde{\bf u}^\prime \right> \right) \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA \\ & = - \int_A \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \rho_0 \, \left( {\bf f} \times \left<\mathbf{u}\right> + \nabla \left<\Phi\right> \right) \, d\tilde{z} \, dA \\ -& - \int_{\partial A} \left( \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \rho_0 \left(\left< \alpha \right> \left
+ \left<\alpha^\prime p^\prime\right> \right) \, d\tilde{z} \right) dl \\ +& - \int_{\partial A} \left( \int_{\tilde{z}_k^{\text{bot}}}^{\tilde{z}_k^{\text{top}}} \rho_0 \left(\left< \alpha \right> \left
+ \left<\alpha^\prime p^\prime\right> \right) \, d\tilde{z} \right) {\bf n}_\perp dl \\ & - \int_A \rho_0 \left[ \left< \alpha \right> \left
+ \left<\alpha^\prime \left(p \nabla \tilde{z}_k^{\text{top}}\right)^\prime\right> \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA \\ & + \int_A \rho_0 \left[ \left< \alpha \right> \left
+ \left<\alpha^\prime \left(p \nabla \tilde{z}_k^{\text{bot}}\right)^\prime\right> \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA. $$ (vh-momentum-reynolds2) @@ -547,7 +547,7 @@ $$ & + \int_A \rho_0 \, \left[ \left(\left< {\bf u} \right> \left< \tilde{w}_{tr} \right> + \left<{\bf u}^\prime \tilde{w}_{tr}^\prime \right> \right) - \left(\left<{\bf u}\right> \left<\tilde{\bf u}\right> + \left< {\bf u}^\prime \tilde{\bf u}^\prime \right> \right) \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA \\ & - \int_A \rho_0 \, \left[ \left(\left< {\bf u} \right> \left< \tilde{w}_{tr} \right> + \left<{\bf u}^\prime \tilde{w}_{tr}^\prime \right> \right) - \left(\left<{\bf u}\right> \left<\tilde{\bf u}\right> + \left< {\bf u}^\prime \tilde{\bf u}^\prime \right> \right) \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA \\ & = - \int_A \rho_0 \, \tilde{h}_k \overline{\left( {\bf f} \times \left<\mathbf{u}\right> + \nabla \left<\Phi\right> \right)}^{\tilde{z}}_k \, dA \\ -& - \int_{\partial A} \rho_0 \tilde{h}_k \left( \overline{\left< \alpha \right> \left
}^{\tilde{z}}_k + \overline{\left<\alpha^\prime p^\prime\right>}^{\tilde{z}}_k \right) dl \\ +& - \int_{\partial A} \rho_0 \tilde{h}_k \left( \overline{\left< \alpha \right> \left
}^{\tilde{z}}_k + \overline{\left<\alpha^\prime p^\prime\right>}^{\tilde{z}}_k \right) {\bf n}_\perp dl \\ & - \int_A \rho_0 \left[ \left< \alpha \right> \left
+ \left<\alpha^\prime \left(p \nabla \tilde{z}_k^{\text{top}} \right)^\prime\right> \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA \\ & + \int_A \rho_0 \left[ \left< \alpha \right> \left
+ \left<\alpha^\prime \left(p \nabla \tilde{z}_k^{\text{bot}} \right)^\prime\right> \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA. $$ (vh-momentum-reynolds-lay-avg) @@ -560,7 +560,7 @@ $$ & + \int_A \rho_0 \, \left[ \left(\left< {\bf u} \right> \left< \tilde{w}_{tr} \right> + \left<{\bf u}^\prime \tilde{w}_{tr}^\prime \right> \right) - \left(\left<{\bf u}\right> \left<\tilde{\bf u}\right> + \left< {\bf u}^\prime \tilde{\bf u}^\prime \right> \right) \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA \\ & - \int_A \rho_0 \, \left[ \left(\left< {\bf u} \right> \left< \tilde{w}_{tr} \right> + \left<{\bf u}^\prime \tilde{w}_{tr}^\prime \right> \right) - \left(\left<{\bf u}\right> \left<\tilde{\bf u}\right> + \left< {\bf u}^\prime \tilde{\bf u}^\prime \right> \right) \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA \\ & = - \int_A \rho_0 \, \tilde{h}_k \overline{\left( {\bf f} \times \left<\mathbf{u}\right> + \nabla \left<\Phi\right> \right)}^{\tilde{z}}_k \, dA \\ -& - \int_{\partial A} \rho_0 \tilde{h}_k \left( \overline{\left< \alpha \right>}^{\tilde{z}}_k \overline{\left
}^{\tilde{z}}_k + \overline{\delta \alpha \delta p}^{\tilde{z}}_k+ \overline{\left<\alpha^\prime p^\prime\right>}^{\tilde{z}}_k \right) dl \\ +& - \int_{\partial A} \rho_0 \tilde{h}_k \left( \overline{\left< \alpha \right>}^{\tilde{z}}_k \overline{\left
}^{\tilde{z}}_k + \overline{\delta \alpha \delta p}^{\tilde{z}}_k+ \overline{\left<\alpha^\prime p^\prime\right>}^{\tilde{z}}_k \right) {\bf n}_\perp dl \\ & - \int_A \rho_0 \left[\left< \alpha \right> \left
+ \left<\alpha^\prime \left(p \nabla \tilde{z}_k^{\text{top}} \right)^\prime\right> \right]_{\tilde{z} = \tilde{z}_k^{\text{top}}} \, dA \\ & + \int_A \rho_0 \left[\left< \alpha \right> \left
+ \left<\alpha^\prime \left(p \nabla \tilde{z}_k^{\text{bot}} \right)^\prime\right> \right]_{\tilde{z} = \tilde{z}_k^{\text{bot}}} \, dA. $$ (vh-momentum-reynolds-lay-avg2) @@ -711,7 +711,7 @@ $$ = 0. $$ (discrete-mass) -In this equation, mass source term ($Q$), such as sources like river runoff, sea ice freshwater fluxes, precipitation, and evaporation are bound up in the surface value of $\tilde{W}_tr^{\text{top}}$. The mass sources will be normalized by $\rho_0$ to achieve consistent units. +In this equation, mass source term ($Q$), such as sources like river runoff, sea ice freshwater fluxes, precipitation, and evaporation are bound up in the surface value of $\tilde{W}_{tr}^{\text{top}}$. The mass sources will be normalized by $\rho_0$ to achieve consistent units. **Tracer:** @@ -730,7 +730,7 @@ $$ \frac{\partial u_{e,k}}{\partial t} & + \left[ {\bf k} \cdot \nabla \times u_{e,k} +f_v\right]_e\left(u_{e,k}^{\perp}\right) + \left[\nabla K\right]_e \\ & + \frac{\rho_0}{\left[\tilde{h}_{i,k}\right]_e} \left\{ \left[\left(u - u_k\right) \left\{\tilde{W}_{tr} \right\} \right]_{e,k}^\text{top} - \left[ \left(u - u_k\right) \left\{\tilde{W}_{tr} \right\} \right]_{e,k+1}^\text{top} \right\} \\ -& = - \left(\nabla \Phi \right)_{e,k} - \frac{1}{\left[\tilde{h}_k\right]_e} \nabla \left( \tilde{h}_k \alpha_k p_k \right) - \frac{1}{\left[\tilde{h}_k\right]_e} \left\{ \left[ \alpha p \nabla \tilde{z}^{\text{top}}\right]_{e,k}^\text{top} - \left[ \alpha p \nabla \tilde{z}^{\text{bot}}\right]_{e,k+1}^\text{top} \right\} \\ +& = - \left(\nabla \Phi \right)_{e,k} - \frac{1}{\left[\tilde{h}_k\right]_e} \nabla \left( \tilde{h}_k \alpha_k p_k \right) - \frac{1}{\left[\tilde{h}_k\right]_e} \left\{ \left[ \alpha p \nabla \tilde{z}^{\text{top}}\right]_{e,k}^\text{top} - \left[ \alpha p \nabla \tilde{z}^{\text{top}}\right]_{e,k+1}^\text{top} \right\} \\ & - \frac{1}{\left[\tilde{h}_{i,k}\right]_e} \nabla \cdot \left( \tilde{h}_k \left< {\bf u}^\prime \otimes {\bf u}^\prime \right>_k \right) - \frac{\rho_0}{\left[\tilde{h}_{i,k}\right]_e^\text{top}} \left\{ \left[ \left<\mathbf{u}^\prime \tilde{w}_{tr}^\prime \right> - \left< \mathbf{u}^\prime \tilde{ u}^\prime \right> \right]_{e,k}^\text{top} - \left[ \left<\mathbf{u}^\prime \tilde{w}_{tr}^\prime \right> - \left< \mathbf{u}^\prime \tilde{ u}^\prime \right> \right]_{e,k+1}^\text{top} \right\}. $$ (discrete-momentum) @@ -859,7 +859,7 @@ $$ (weak-derivative) If [](#weak-derivative) is averaged between $\tilde{z}_{k-1/2}^{\text{top}}$ and $\tilde{z}_{k+1/2}^{\text{top}}$, we arrive at the expected form of the gradient centered on layer interfaces $$ -\left[\frac{\partial \varphi}{\partial z}\right]_{avg} = \frac{\left(\varphi_k - \varphi_{k+1}\right)}{0.5 \left(\tilde{h}_k + \tilde{h}_{k+1}\right)} +\left[\frac{\partial \varphi}{\partial \tilde{z}}\right]_{avg} = \frac{\left(\varphi_k - \varphi_{k+1}\right)}{0.5 \left(\tilde{h}_k + \tilde{h}_{k+1}\right)} $$ (weak-deriv-final) where $0.5 \left(\tilde{h}_k + \tilde{h}_{k+1}\right)$ is the distance between $\tilde{z}_{k-1/2}^{\text{top}}$ and $\tilde{z}_{k+1/2}^{\text{top}}$. A similar derivation can be followed to compute gradients across layer centers. This will form discrete derivatives in Omega. @@ -867,7 +867,7 @@ where $0.5 \left(\tilde{h}_k + \tilde{h}_{k+1}\right)$ is the distance between $ With this, we can now fully discretize [](#discrete-mom-vert-diff) as $$ --\frac{\rho_0}{\left[\tilde{h}_k\right]_e} \left\{ \left[\left \right]_{e,k} - \left[\left \right]_{e,k+1} \right\} = -\frac{\rho_0}{\left[\tilde{h}_k\right]_e} \left\{ \frac{\left(u_{e,k-1} - u_{e,k}\right)}{0.5 \left(\tilde{h}_{k-1} + \tilde{h}_{k}\right)} - \frac{\left(u_{e,k} - u_{e,k+1}\right)}{0.5 \left(\tilde{h}_k + \tilde{h}_{k+1}\right)} \right\}. +-\frac{1}{\left[\tilde{h}_k\right]_e} \left\{ \left[\left \right]_{e,k} - \left[\left \right]_{e,k+1} \right\} = -\frac{1}{\left[\tilde{h}_k\right]_e} \left\{ \frac{\left(u_{e,k-1} - u_{e,k}\right)}{0.5 \left(\tilde{h}_{k-1} + \tilde{h}_{k}\right)} - \frac{\left(u_{e,k} - u_{e,k+1}\right)}{0.5 \left(\tilde{h}_k + \tilde{h}_{k+1}\right)} \right\}. $$ (final-vert-vel-dissipation) This form can be interfaced with the Omega [tridiagonal solver](TridiagonalSolver.md) routine. @@ -881,20 +881,20 @@ The discretized momentum and tracer forcing appear as the surface value of the v The wind forcing is applied as a top boundary condition during implicit vertical mixing as $$ -\frac{\tau_{e}}{[ \tilde{h}_{i,k}]_e} +\frac{\tau_{e}}{\rho_0 [ \tilde{h}_{i,k}]_e} $$ -where $\tau$ is the wind stress in Pa. Since the mass-thickness $\tilde{h}$ is in kg/s/m$^2$, this results in the desired units of m/s$^2$ for a momentum tendency term. +where $\tau$ is the wind stress in [Pa]. Since the pseudo-thickness $\tilde{h}$ is in [m], this results in the desired units of [m s$^{-2}$] for a momentum tendency term. #### Bottom Drag Bottom Drag is applied as a bottom boundary condition during implicit vertical mixing as $$ -- C_D \frac{u_{e,k}\left|u_{e,k}\right|}{[\alpha_{i,k}\tilde{h}_{i,k}]_e}. +- C_D \frac{u_{e,k}\left|u_{e,k}\right|}{\rho_0[\alpha_{i,k}\tilde{h}_{i,k}]_e}. $$ (discrete-mom-bottom) -The units of specific volume times mass-thickness $\alpha h$ are length (m), so that the full term has units of m/s$^2$. +The units of the term in the denominator is length [m], so that the full term has units of [m s$^{-2}$]. #### Rayleigh Drag @@ -912,7 +912,7 @@ $$ \frac{LHF}{C_p \rho_1} $$ -where $\rho_1$ is the density in the top layer of Omega. This gives units of mK/s. +where $\rho_1$ is the density in the top layer of Omega. This gives units of [m K s$^-1$]. #### Freshwater forcing @@ -920,7 +920,7 @@ Since Omega is a non-Boussinesq ocean, surface sources of water will be mass flu ### Horizontal Tracer Diffusion -As with momentum dissipation, the horizontal tracer diffusion arises from the $\left<\mathbf{u}_k^\prime \varphi_k \right>$ and $\left< \tilde{u}^\prime \varphi^\prime \right>$. As in MPAS-Ocean, the former term can be parameterized either as Laplacian or Biharmonic diffusion, +As with momentum dissipation, the horizontal tracer diffusion arises from the $\left<\mathbf{u}_k^\prime \varphi_{k}^\prime \right>$ and $\left< \tilde{u}^\prime \varphi^\prime \right>$. As in MPAS-Ocean, the former term can be parameterized either as Laplacian or Biharmonic diffusion, $$ D^\varphi_{i,k} = \kappa_{2,e} \nabla^2 \varphi_{i,k} - \kappa_{4,e} \nabla^4 \varphi_{i,k}. @@ -942,16 +942,16 @@ The biharmonic is a Laplacian operator applied twice, $$ - \nabla \cdot \left( \kappa_{4,e} \nabla -\right[ +\left[ \nabla \cdot \left( \tilde{h}_{i,k} \nabla \varphi_{i,k} \right) -\left] +\right] \right). $$ (discrete-tracer-del4) Each of these operators are written as horizontal stencils in the {ref}`Omega V0 Operator Formulation Section <33-operator-formulation>`. Again we note that the variables in these equations are the layer average. #### Horizontal tracer diffusion across a sloping surface -As with horizontal momentum dissipation, there is a turbulent flux of tracer across a sloping $\tilde{z}$ interface. We interpret the $\left< \tilde{z}^\prime \varphi^\prime \right>$ as the projection of the horizontal turbulent flux across the sloping interface. The form of the diffusion is similar, taking Laplacian diffusion as an example +As with horizontal momentum dissipation, there is a turbulent flux of tracer across a sloping $\tilde{z}$ interface. We interpret the $\left< \tilde{u}^\prime \varphi^\prime \right>$ as the projection of the horizontal turbulent flux across the sloping interface. The form of the diffusion is similar, taking Laplacian diffusion as an example $$ \nabla \cdot \left( \tilde{h}_{i} \kappa_{2,e} \nabla \varphi_{i} \right)_k. @@ -1020,51 +1020,54 @@ Table 1. Definition of variables. Geometric variables may be found in the {ref}` | symbol | name | units | location | name in code | notes | |---------------------|-----------------------------|----------|-|---------|-------------------------------------------------------| -|$D_{i,k}$ | divergence | 1/s | cell | Divergence |$D=\nabla\cdot\bf u$ | -|$f_v$ | Coriolis parameter| 1/s | vertex | FVertex | $f = 2\Omega sin(\phi)$, $\Omega$ rotation rate, $\phi$ latitude| +|$D_{i,k}$ | divergence | s$^{-1}$ | cell | Divergence |$D=\nabla\cdot\bf u$ | +|$f_v$ | Coriolis parameter| s$^{-1}$ | vertex | FVertex | $f = 2\Omega sin(\phi)$, $\Omega$ rotation rate, $\phi$ latitude| |$f_{eos}$ | equation of state | - | any | function call | | -|$g$ | gravitational acceleration | m/s$^2$ | constant | Gravity | -|$\tilde{h}_{i,k}$ | pseudo-thickness | m | cell | PseudoThickness | | +|$g$ | gravitational acceleration | m s$^{-2}$ | constant | Gravity | +|$\tilde{h}_{i,k}$ | pseudo-thickness | m | cell | LayerThickness | $\tilde{h} = (\rho/\rho_0) h$ | +|$h_{i,k}$ | geometric layer thickness | m | cell | GeometricThickness | | |$k$ | vertical index | | |${\bf k}$ | vertical unit vector | | |$K_{min}$ | shallowest active layer | | |$K_{max}$ | deepest active layer | | -|$K_{i,k}$ | kinetic energy | m$^2$/s$^2$ | cell | KineticEnergyCell |$K = \left\| {\bf u} \right\|^2 / 2$ | +|$K_{i,k}$ | kinetic energy | m$^2$ s$^{-2}$ | cell | KineticEnergyCell |$K = \left\| {\bf u} \right\|^2 / 2$ | |$p_{i,k}$ | pressure | Pa | cell | Pressure | see [](discrete-pressure) | |$p^{floor}_i$ | bottom pressure | Pa | cell | PFloor | pressure at ocean floor |$p^{surf}_i$ | surface pressure | Pa | cell | PSurface | due to atm. pressure, sea ice, ice shelves -|$q_{v,k}$ | potential vorticity | 1/m/s | vertex | PotentialVorticity |$q = \left(\zeta+f\right)/h$ | -|$Ra$ | Rayleigh drag coefficient | 1/s | constant | | | +|$q_{v,k}$ | potential vorticity | m$^{-1}$ s$^{-1}$ | vertex | PotentialVorticity |$q = \left(\zeta+f\right)/\tilde{h}$ | +|$Ra$ | Rayleigh drag coefficient | s$^{-1}$ | constant | | | |$S_{i,k}$ | salinity | PSU | cell | Salinity | a tracer $\varphi$ | |$t$ | time | s | none | | | -|${\bf u}_k$ | velocity, vector form | m/s | - | | | -|$u_{e,k}$ | velocity, normal to edge | m/s | edge | NormalVelocity | | -|$u^\perp_{e,k}$ | velocity, tangential to edge | m/s | edge | TangentialVelocity |${\bf u}^\perp = {\bf k} \times {\bf u}$| -|$\alpha_{i,k}$ | specific volume | m$^3$/kg | cell | SpecificVolume | $v = 1/\rho$ | -|$\tilde{w}_{i,k}$ | vertical velocity across a pseudo height surface | m/s | cell | VerticalVelocity | volume transport per m$^2$ | -|$\tilde{u}_{i,k}$ | projection of normal velocity across a pseudo height surface | m/s | cell | | | -|$\tilde{W}_{i,k}$ | total velocity across a pseudo height surface $\tilde{W}_{i,k} \equiv $\tilde{w}_{i,k} - \tilde{u}_{i,k}$ | m/s | cell | | | -|$\tilde{z}$ | vertical coordinate | m | - | | positive upward | -|$\tilde{z}^{top}_{i,k}$ | layer top z-location | m | cell | ZTop | see [](discrete-z) | -|$\tilde{z}^{mid}_{i,k}$ | layer mid-depth z-location | m | cell | ZMid | -|$\tilde{z}^{surf}_{i}$ | ocean surface, i.e. sea surface height | m | cell | ZSurface | same as SSH in MPAS-Ocean | -|$\tilde{z}^{floor}_{i}$ | ocean floor z-location | m | cell | ZFloor | -bottomDepth from MPAS-Ocean | -|$\zeta_{v,k}$ | relative vorticity| 1/s | vertex | RelativeVorticity |$\zeta={\bf k} \cdot \left( \nabla \times {\bf u}\right)$ | -|$\zeta_a$ | absolute vorticity ($\zeta + f$) | 1/s | vertex | | +|${\bf u}_k$ | velocity, vector form | m s$^{-1}$ | - | | | +|$u_{e,k}$ | velocity, normal to edge | m s$^{-1}$ | edge | NormalVelocity | | +|$u^\perp_{e,k}$ | velocity, tangential to edge | m s$^{-1}$ | edge | TangentialVelocity |${\bf u}^\perp = {\bf k} \times {\bf u}$| +|$\alpha_{i,k}$ | specific volume | m$^3$ kg$^{-1}$ | cell | SpecificVolume | $v = 1/\rho$ | +|$\tilde{u}_{i,k}$ | projection of normal velocity across a pseudo height surface | m s$^{-1}$ | cell | | | +|$\tilde{w}_{i,k}$ | vertical velocity across a pseudo height surface | m s$^{-1}$ | cell | VerticalVelocity | volume transport per m$^2$ | +|$\tilde{w}_{tr\ i,k}$ | net vertical transport through a moving surface | m s$^{-1}$ | cell | NetVertTransportVelocity | volume transport per m$^2$ | +|$\tilde{W}_{tr\ i,k}$ | total vertical velocity across a pseudo height surface | m s$^{-1}$ | cell | TotalVertTransportVelocity | $\tilde{W}_{tr} \equiv \tilde{w}_{tr} - \tilde{u}$ | +|$\tilde{z}$ | vertical coordinate (pseudo-height) | m | - | | positive upward | +|$\tilde{z}^{top}_{i,k}$ | layer top $\tilde{z}$-location | m | cell | ZTop | see [](discrete-z) | +|$\tilde{z}^{mid}_{i,k}$ | layer mid-depth $\tilde{z}$-location | m | cell | ZMid | +|$\tilde{z}^{surf}_{i}$ | ocean surface $\tilde{z}$-location | m | cell | ZSurface | +|$\tilde{z}^{floor}_{i}$ | ocean floor $\tilde{z}$-location | m | cell | ZFloor | +|${z}^{floor}_{i}$ | ocean floor geometric z-location | m | cell | GeometricZFloor | -bottomDepth from MPAS-Ocean | +|$\zeta_{v,k}$ | relative vorticity| s$^{-1}$ | vertex | RelativeVorticity |$\zeta={\bf k} \cdot \left( \nabla \times {\bf u}\right)$ | +|$\zeta_a$ | absolute vorticity ($\zeta + f$) | s$^{-1}$ | vertex | | |$\Theta_{i,k}$ | conservative temperature | C | cell | Temperature | a tracer $\varphi$ | -|$\kappa_2$| tracer diffusion | m$^2$/s | cell | | | -|$\kappa_4$| biharmonic tracer diffusion | m$^4$/s | cell | | | -|$\kappa_v$| vertical tracer diffusion | m$^2$/s | cell | | | +|$\kappa_2$| tracer diffusion | m$^2$ s$^{-1}$ | cell | | | +|$\kappa_4$| biharmonic tracer diffusion | m$^4$ s$^{-1}$ | cell | | | +|$\kappa_v$| vertical tracer diffusion | m$^2$ s$^{-1}$ | cell | | | |meshScaling | variable that holds the scaling factor for biharmonic and laplacian mixing | unitless | edge | | | -|$\nu_{2,e}$ | horizontal del2 viscosity scaled by mesh resolution | m$^2$/s | edge | | | -|$\nu_{4,e}$ | horizontal biharmonic (del4) viscosity scaled by mesh resolution | m$^4$/s | edge | | | -|$\nu_v$| vertical momentum diffusion | m$^2$/s | edge | | | -|$\varphi_{i,k}$ | tracer | kg/m$^3$ or similar | cell | | e.g. $\Theta$, $S$ | -|$\rho_{i,k}$ | density | kg/m$^3$ | cell | Density | -|$\rho_0$ | Reference density | kg/m$^3$ | | constant | -|$\tau_i$ | wind stress | Pa=N/m$^2$ | edge | SurfaceStress | -|$\Phi_{i,k}$ | geopotential| | cell | Geopotential |$\partial \Phi / \partial z = g$ for gravity | -|$\omega$ | mass transport | kg/s/m^2 | cell | VerticalTransport |$\omega=\rho_0 w$| +|$\nu_{2,e}$ | horizontal del2 viscosity scaled by mesh resolution | m$^2$ s$^{-1}$ | edge | | | +|$\nu_{4,e}$ | horizontal biharmonic (del4) viscosity scaled by mesh resolution | m$^4$ s$^{-1}$ | edge | | | +|$\nu_v$| vertical momentum diffusion | m$^2$ s$^{-1}$ | edge | | | +|$\varphi_{i,k}$ | tracer | kg m$^{-3}$ or similar | cell | | e.g. $\Theta$, $S$ | +|$\rho_{i,k}$ | density | kg m$^{-3}$ | cell | Density | +|$\rho_0$ | Reference density | kg m$^{-3}$ | | constant | +|$\tau_i$ | wind stress | Pa=N m$^{-2}$ | edge | SurfaceStress | +|$\Phi_{i,k}$ | geopotential| m$^2$ s$^{-2}$ | cell | Geopotential |$\partial \Phi / \partial z = g$ for gravity | +|$\omega$ | mass transport | kg s$^{-1}$ m$^{-2}$ | cell | VerticalTransport |$\omega=\rho_0 w$| ## 13. Verification and Testing