-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreferences.txt
21 lines (21 loc) · 3.16 KB
/
references.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
O’DONNELL, R. Lecture 5: Quantum Query Complexity. [s.l: s.n.]. Disponível em: <https://www.cs.cmu.edu/~odonnell/quantum15/lecture05.pdf>. Acesso em: 4 set. 2023.
O’DONNELL, R. Lecture 13: Lower Bounds using the Adversary Method. [s.l: s.n.]. Disponível em: <https://www.cs.cmu.edu/~odonnell/quantum15/lecture13.pdf>. Acesso em: 5 set. 2023.
SOARE, R. I. Turing oracle machines, online computing, and three displacements in computability theory. Annals of Pure and Applied Logic, v. 160, n. 3, p. 368–399, set. 2009.
BRODKORB, L.; EPSTEIN, R. The Entscheidungsproblem and Alan Turing. [s.l: s.n.]. Disponível em: <https://www.gcsu.edu/sites/files/page-assets/node-808/attachments/brodkorb.pdf>. Acesso em: 7 set. 2023.
AMREEN, S.; HOQUE, R. Oracle Turing Machines. [s.l: s.n.]. Disponível em: <https://web.eecs.utk.edu/~bmaclenn/Classes/494-594-UC-F15/presentations/OTM.pdf>. Acesso em: 9 set. 2023.
KALYANASUNDARAM, S. mod04lec23 - Oracle Turing Machines. Disponível em: <https://www.youtube.com/watch?v=ElSExH4Xolc>. Acesso em: 12 set. 2023.
DAVIS, M. Turing Reducibility? [s.l: s.n.]. Disponível em: <https://www.ams.org/notices/200610/whatis-davis.pdf>. Acesso em: 12 set. 2023.
SIPSER, M. Reductions 1.1 Introduction Reductions. [s.l: s.n.]. Disponível em: <https://courses.grainger.illinois.edu/cs373/fa2013/Lectures/lec23.pdf>. Acesso em: 14 set. 2023.
What does it mean to be Turing reducible? Disponível em: <https://cs.stackexchange.com/questions/54576/what-does-it-mean-to-be-turing-reducible>. Acesso em: 15 set. 2023.
KOTHARI, R. An optimal quantum algorithm for the oracle identification problem. arXiv (Cornell University), 29 nov. 2013.
FAN, Y. A Generalization of the Deutsch-Jozsa Algorithm to Multi-Valued Quantum Logic. Disponível em: <https://arxiv.org/abs/0809.0932>. Acesso em: 20 set. 2023.
SUNDARAPPAN, K. How to build oracles for Quantum Algorithms. Disponível em: <https://www.youtube.com/watch?v=R0LYfPMElJg>. Acesso em: 24 set. 2023.
YAMAKAWA, T.; ZHANDRY, M. Classical vs Quantum Random Oracles. Disponível em: <https://eprint.iacr.org/2020/1270>. Acesso em: 27 set. 2023.
BACON, D. CSE 599d -Quantum Computing Simon’s Algorithm. [s.l: s.n.]. Disponível em: <https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes8.pdf>. Acesso em: 29 set. 2023.
BUHRMAN, H.; CLEVE, R.; WIGDERSON, A. Quantum vs. Classical Communication and Computation. arXiv (Cornell University), 14 fev. 1998.
SANCHEZ-RIVERO, J. et al. Some Initial Guidelines for Building Reusable Quantum Oracles. arXiv (Cornell University), 27 mar. 2023.
GILLIAM, A.; PISTOIA, M.; GONCIULEA, C. Canonical Construction of Quantum Oracles. arXiv (Cornell University), 18 jun. 2020.
JOHANSSON, N.; LARSSON, J.-Å. Quantum Simulation Logic, Oracles, and the Quantum Advantage. Entropy, v. 21, n. 8, p. 800, 15 ago. 2019.
O.D. PRIMQULOV. The role of quantum algorithms in the solution of important problems. Zenodo (CERN European Organization for Nuclear Research), v. 2, n. 1, 31 ago. 2022.
WONG, T. G. Introduction to classical and quantum computing. Omaha: Rooted Groove. Copyright, 2022.
KANG, H. Quantum Phase Estimation. Disponível em: <https://learn.qiskit.org/course/ch-algorithms/quantum-phase-estimation>.