-
Notifications
You must be signed in to change notification settings - Fork 0
/
垃圾桶主程序.py
340 lines (286 loc) · 12.6 KB
/
垃圾桶主程序.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# 基本原理:垃圾被丢进垃圾桶,触发红外模块,触发程序,系统调用训练好的模型对图像进行分类
# 根据模型预测的结果,通过串口发送指令给下位机,控制垃圾桶进行分类操作
# 同时有反馈步骤 + 保存每次预测的图像 (具体原理和步骤详见报告书)
# 路径结构,文件夹名称表示图片的类别
#||imagePath
#|----plastic
# |----image1
# |----image2
# ............
#|----metal
# |----image1
# |----image2
# ............
#|----paper
# |----image1
# |----image2
# ............
#|----other
# |----image1
# |----image1
#
from tkinter import *
from PIL import Image,ImageTk
import tkinter.messagebox
import tkinter as tk
import time
import pyautogui
from keras.models import load_model
from keras.preprocessing import image
from keras.applications.imagenet_utils import preprocess_input
from keras.preprocessing.image import img_to_array
import numpy as np
import time
import os
from PIL import Image
import cv2
from multiprocess import Process,Queue
import os,time,random
import RPi.GPIO as GPIO
import serial
# 界面显示的logo图标
logo_path = "/home/pi/Desktop/smart_trash/photo/fly_hero.jpg"
imagePath = "/home/pi/Desktop/Images/" #图片储存的路径(注意路径中不能有中文名)
labels = ["金属","塑料","废纸","其他"]
time_ok = time.time()
time_yesno = time.time()
time_init = time.time()
sign_yesno = 0
sign_ok = 0
sign_init = 0
#初始化IO口,分别是红外出发端口和LED补光控制端口
GPIO.setmode(GPIO.BCM)
GPIO.setup(21,GPIO.IN)
GPIO.setup(20,GPIO.OUT,initial=GPIO.LOW)
GPIO.setwarnings(False)
#初始化串口,串口连接下位机
ser = serial.Serial("/dev/ttyUSB0",9600,timeout =1)
# 加载已经训练好的模型
happyModel = load_model("/home/pi/Desktop/Models/MobileNet_trash.h5")
#拍照
def capture(count):
os.system("fswebcam --no-banner -r 640x480 -d /dev/video"+str(count)+" /home/pi/Desktop/Images/test"+str(count)+".jpg")
#图像预处理
def image_preprocess(imagePath):
image = cv2.imread(imagePath)
image = cv2.resize(image,(128,128))
image = image.astype("float")/255.0
image = img_to_array(image)
image = np.expand_dims(image,axis=0)
return image
#压缩图像
def compressed_image(imagePath,weight,height):
sImag = Image.open(imagePath)
print(weight,height)
dImg = sImag.resize((weight,height),Image.ANTIALIAS)
dImg.save(imagePath)
def Tk_photo(photoPath,weight,height):
sImag = Image.open(photoPath)
dImg = sImag.resize((weight,height),Image.ANTIALIAS)
dImg.save(photoPath.split(".")[0]+"_show."+photoPath.split(".")[1]) #重命名显示的图片
photo = ImageTk.PhotoImage(dImg)
return photo
class Popup(tk.Toplevel):
def __init__(self,parent):
super().__init__()
self.title("请给垃圾进行标记~")
self.parent = parent
self.geometry("480x360")
Label(self,text = "请选择您刚才扔的垃圾的类型",font = "Monaco 16",fg="green").place(x=80,y=30)
Button_capture1 = Button(self,text="塑料",font = "Monaco 12",width=8,height=5,command=lambda:self.move_file("plastic"))
Button_capture2 = Button(self,text="金属",font = "Monaco 12",width=8,height=5,command=lambda:self.move_file("metal"))
Button_capture3 = Button(self,text="废纸",font = "Monaco 12",width=8,height=5,command=lambda:self.move_file("paper"))
Button_capture4 = Button(self,text="其他",font = "Monaco 12",width=8,height=5,command=lambda:self.move_file("other"))
Button_capture1.place(x = 10,y = 100)
Button_capture2.place(x = 125,y = 100)
Button_capture3.place(x = 240,y = 100)
Button_capture4.place(x = 355,y = 100)
def message_show(self):
global time_ok,sign_ok,time_init,sign_init
self.destroy()
time_ok = time.time()
sign_ok = 1
a = tkinter.messagebox.showinfo("谢谢","谢谢您的反馈!\n你的反馈让我变得更智能!")
time_init = time.time()
sign_init = 1
# 将每次判断的图像保存到文件夹当中,以增加数据集
def move_file(self,trash_type):
os.system("mv /home/pi/Desktop/Images/test0.jpg /home/pi/Desktop/Images/user_label_image/"+trash_type+"/"+str(int(time.time()))+"0"+".jpg")
os.system("mv /home/pi/Desktop/Images/test1.jpg /home/pi/Desktop/Images/user_label_image/"+trash_type+"/"+str(int(time.time()))+"1"+".jpg")
if trash_type == "plastic":
ser.write("1".encode(encoding="utf-8"))
elif trash_type == "paper":
ser.write("2".encode(encoding="utf-8"))
elif trash_type == "metal":
ser.write("3".encode(encoding="utf-8"))
elif trash_type == "other":
ser.write("4".encode(encoding="utf-8"))
if trash_type == "plastic":
a = "塑料"
elif trash_type == "paper":
a = "废纸"
elif trash_type == "metal":
a = "金属"
elif trash_type == "other":
a = "其他"
self.parent.label_decision.config(text="垃圾种类:"+a,font = "Monaco 18",fg="blue")
self.parent.update()
self.message_show()
class MyApp(tk.Tk):
def __init__(self):
super().__init__()
self.title("人工智能图像识别垃圾桶 电协小飞侠队")
self.geometry("480x360")
self.begin()
def begin(self):
a = Tk_photo(logo_path,100,100)
self.photo_show1 = Label(self,image = a)
self.photo_show1.image = a
self.label1 = Label(self,text = "摄像头1:")
b = Tk_photo(logo_path,100,100)
self.photo_show2 = Label(self,image = b)
self.photo_show2.image = b
self.label2 = Label(self,text = "摄像头2:")
self.label1.place(x=20,y=10)
self.photo_show1.place(x=20,y=30)
self.label2.place(x=20,y=145)
self.photo_show2.place(x=20,y=165)
self.label_state = Label(self,text="状态:空闲",font = "Monaco 15",fg="green")
self.label_decision = Label(self,text="垃圾种类:无",font = "Monaco 18",fg="red")
self.label_result1 = Label(self,text="等待结果",font = "Monaco 12")
self.label_result2 = Label(self,text="等待结果1",font = "Monaco 12")
self.label_result3 = Label(self,text="等待结果2",font = "Monaco 12")
self.label_result4 = Label(self,text="等待结果3",font = "Monaco 12")
Label(self,text="置信度:",font = "Monaco 15").place(x = 160,y= 130)
self.label_state.place(x=160,y=30)
self.label_decision.place(x=160,y=60)
self.label_result1.place(x = 160,y= 160)
self.label_result2.place(x = 160,y= 190)
self.label_result3.place(x = 160,y= 220)
self.label_result4.place(x = 160,y= 250)
Button_capture1 = Button(self,text="点击",font = "Monaco 10",width=8,height=5,command=self.on_click)
Button_capture1.place(x = 475,y = 130)
def init(self):
global sign_init,sign_yesno,sign_ok
sign_init = 0
sign_yesno = 0
sign_ok = 0
a = Tk_photo(logo_path,100,100)
self.photo_show1 = Label(self,image = a)
self.photo_show1.image = a
self.photo_show1.place(x=20,y=30)
b = Tk_photo(logo_path,100,100)
self.photo_show2 = Label(self,image = b)
self.photo_show2.image = b
self.photo_show2.place(x=20,y=165)
self.label_decision.config(text="垃圾种类:无",font = "Monaco 18",fg="red")
self.label_result1.config(text="等待垃圾",font = "Monaco 12")
self.label_result2.config(text="等待垃圾",font = "Monaco 12")
self.label_result3.config(text="等待垃圾",font = "Monaco 12")
self.label_result4.config(text="等待垃圾",font = "Monaco 12")
a = Tk_photo(logo_path,100,100)
self.photo_show1 = Label(self,image = a)
self.photo_show1.image = a
self.label1 = Label(self,text = "摄像头1:")
b = Tk_photo(logo_path,100,100)
self.photo_show2 = Label(self,image = b)
self.photo_show2.image = b
self.label2 = Label(self,text = "摄像头2:")
# 促发系统
def on_click(self):
global time_yesno,sign_yesno,time_ok,sign_ok,time_init,sign_init
#拍照+识别
self.init()
result = {}
self.label_state.config(text="状态:正在拍照",font = "Monaco 15",fg="blue")
self.update()
GPIO.output(20,1) #开灯拍照
time.sleep(1)
capture(0)
capture(1)
GPIO.output(20,0) #关灯
self.label_state.config(text="状态:正在识别",font = "Monaco 15",fg="blue")
self.update()
image1 = image_preprocess("/home/pi/Desktop/Images/test0.jpg")
image2 = image_preprocess("/home/pi/Desktop/Images/test1.jpg")
#预测图像,对两个摄像头采集的图像进行预测
pred1 = happyModel.predict(image1)
pred2 = happyModel.predict(image2)
print(pred1)
print(pred2)
# 平均两个预测结果
for i in range(4):
result[labels[i]] = float(pred1[0][i] + pred2[0][i])
result[labels[i]] = round(result[labels[i]]*100/2,2)
sorted_r = sorted(result.items(),key=lambda result:result[1])
a = Tk_photo("/home/pi/Desktop/Images/test0.jpg",100,100)
self.photo_show1 = Label(self,image = a)
self.photo_show1.image = a
self.photo_show1.place(x=20,y=30)
b = Tk_photo("/home/pi/Desktop/Images/test1.jpg",100,100)
self.photo_show2 = Label(self,image = b)
self.photo_show2.image = b
self.photo_show2.place(x=20,y=165)
self.label_decision.config(text="垃圾种类:"+str(sorted_r[-1][0]),font = "Monaco 18",fg="blue")
self.label_result1.config(text="1."+sorted_r[-1][0]+":"+str(sorted_r[-1][1])+"%",fg="green")
self.label_result2.config(text="2."+sorted_r[-2][0]+":"+str(sorted_r[-2][1])+"%")
self.label_result3.config(text="3."+sorted_r[-3][0]+":"+str(sorted_r[-3][1])+"%")
self.label_result4.config(text="4."+sorted_r[-4][0]+":"+str(sorted_r[-4][1])+"%")
time_yesno = time.time()
sign_yesno = 1
YN = tkinter.messagebox.askyesno(title="请问",message="识别结果是:\n\n"+" "+sorted_r[-1][0]+"\n\n请问正确吗?")
self.label_state.config(text="状态:空闲",font = "Monaco 15",fg="green")
self.update()
if YN == False:
sign_yesno = 0
pw = Popup(self)
self.wait_window(pw)
else:
if sorted_r[-1][0] == "塑料":
trash_type = "plastic"
elif sorted_r[-1][0] == "金属":
trash_type = "metal"
elif sorted_r[-1][0] == "其他":
trash_type = "other"
elif sorted_r[-1][0] == "废纸":
trash_type = "paper"
if sorted_r[-1][0] == "塑料":
ser.write("1".encode(encoding="utf-8"))
elif sorted_r[-1][0] == "废纸":
ser.write("2".encode(encoding="utf-8"))
elif sorted_r[-1][0] == "金属":
ser.write("3".encode(encoding="utf-8"))
elif sorted_r[-1][0] == "其他":
ser.write("4".encode(encoding="utf-8"))
os.system("mv /home/pi/Desktop/Images/test0.jpg /home/pi/Desktop/Images/user_label_image/"+trash_type+"/"+str(int(time.time()))+"0"+".jpg")
os.system("mv /home/pi/Desktop/Images/test1.jpg /home/pi/Desktop/Images/user_label_image/"+trash_type+"/"+str(int(time.time()))+"1"+".jpg")
time_ok = time.time()
sign_ok = 1
tkinter.messagebox.showinfo("谢谢","谢谢您的反馈!\n你的反馈让我变得更加智能!")
time_init = time.time()
sign_init = 1
def main():
global time_yesno,time_ok,time_init,sign_yesno,sign_ok,sign_init
if GPIO.input(21)==0:
time.sleep(0.15)
if GPIO.input(21)==0:
pyautogui.click(x = 495,y = 215)
print("4")
pyautogui.click(x = 480,y = 320)
if ((time.time()-time_yesno) >5) and (sign_yesno == 1):
sign_yesno = 0
pyautogui.press("enter")
print("1")
if ((time.time()-time_ok) >2) and (sign_ok == 1):
sign_ok = 0
pyautogui.press("enter")
print("2")
if ((time.time()-time_init) >8) and (sign_init == 1):
sign_init = 0
app.init()
print("3")
app.after(1,main)
if __name__ == '__main__':
app = MyApp()
app.after(1,main)
app.mainloop()