forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RNN.cpp
571 lines (519 loc) · 21.5 KB
/
RNN.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
#include <ATen/native/RNN.h>
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/MatrixRef.h>
#include <ATen/TensorUtils.h>
#include <ATen/Dispatch.h>
#include <c10/core/GradMode.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <torch/library.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/mkldnn_convolution_native.h>
#include <ATen/ops/mkldnn_rnn_layer_backward_native.h>
#include <ATen/ops/mkldnn_rnn_layer_native.h>
#endif
#if !AT_MKLDNN_ENABLED()
namespace at::native {
std::tuple<Tensor, Tensor, Tensor, Tensor> mkldnn_rnn_layer(
const Tensor& input,
const Tensor& w0,
const Tensor& w1,
const Tensor& w2,
const Tensor& w3,
const Tensor& hx_,
const Tensor& cx_,
bool reverse,
IntArrayRef batch_sizes,
int64_t mode,
int64_t hidden_size,
int64_t num_layers,
bool has_biases,
bool bidirectional,
bool batch_first,
bool train) {
AT_ERROR("mkldnn_rnn_layer: ATen not compiled with MKLDNN support");
}
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> mkldnn_rnn_layer_backward(
const Tensor& input,
const Tensor& weight0,
const Tensor& weight1,
const Tensor& weight2,
const Tensor& weight3,
const Tensor& hx_,
const Tensor& cx_tmp,
const Tensor& output,
const Tensor& hy_,
const Tensor& cy_,
const std::optional<Tensor>& grad_output_r_opt,
const std::optional<Tensor>& grad_hy_r_opt,
const std::optional<Tensor>& grad_cy_r_opt,
bool reverse,
int64_t mode,
int64_t hidden_size,
int64_t num_layers,
bool has_biases,
bool train,
bool bidirectional,
at::IntArrayRef batch_sizes,
bool batch_first,
const at::Tensor& workspace) {
AT_ERROR("mkldnn_rnn_layer_backward: ATen not compiled with MKLDNN support");
}
REGISTER_NO_CPU_DISPATCH(lstm_mkldnn_stub);
} // namespace at::native
#else // AT_MKLDNN_ENABLED
#include <ATen/native/mkldnn/MKLDNNCommon.h>
#include <ATen/native/mkldnn/Utils.h>
namespace at::native {
struct RNNParams {
ideep::rnn_kind mode;
int64_t seq_length;
int64_t mini_batch;
int64_t input_size;
int64_t hidden_size;
int64_t num_directions;
int64_t num_layers;
bool batch_first;
bool train;
at::IntArrayRef batch_sizes;
int64_t num_gates;
int64_t num_bias_gates;
RNNParams(
const at::Tensor& input,
at::IntArrayRef batch_sizes_,
int64_t mode_,
int64_t hidden_size_,
int64_t num_layers_,
bool bidirectional,
bool batch_first_,
bool train_) {
mode = static_cast<ideep::rnn_kind>(mode_);
batch_first = batch_first_;
seq_length = input.size(0);
mini_batch = input.size(1);
input_size = input.size(2);
hidden_size = hidden_size_;
num_directions = bidirectional ? 2 : 1;
num_layers = num_layers_;
train = train_;
batch_sizes = batch_sizes_;
if (mode == ideep::rnn_kind::LSTM) {
num_gates = 4;
num_bias_gates = 4;
} else if (mode == ideep::rnn_kind::GRU) {
num_gates = 3;
num_bias_gates = 4;
} else {
// RNN_RELU; RNN_TANH
num_gates = 1;
num_bias_gates = 1;
}
}
// mkldnn memory descriptors
using format = ideep::format_tag;
using desc = ideep::tensor::desc;
using dtype = ideep::tensor::data_type;
desc src_layer_desc(int64_t _input_size, dtype dtype) const {
return {{seq_length, mini_batch, _input_size}, dtype, format::tnc};
}
desc src_iter_desc(dtype dtype) const {
return {{1, 1, mini_batch, hidden_size}, dtype, format::ldnc};
}
desc src_iter_c_desc(dtype dtype) const {
return {{1, 1, mini_batch, hidden_size}, dtype, format::ldnc};
}
// logical size described as ldigo
desc weights_layer_desc(int64_t _input_size, dtype dtype) const {
return {{1, 1, _input_size, num_gates, hidden_size}, dtype, format::ldgoi};
}
desc weights_layer_ldigo_desc(int64_t _input_size, dtype dtype) const {
return {{1, 1, _input_size, num_gates, hidden_size}, dtype, format::ldigo};
}
desc weights_iter_desc(dtype dtype) const {
return {{1, 1, hidden_size, num_gates, hidden_size}, dtype, format::ldgoi};
}
desc weights_iter_ldigo_desc(dtype dtype) const {
return {{1, 1, hidden_size, num_gates, hidden_size}, dtype, format::ldigo};
}
desc bias_desc(dtype dtype) const {
return {{1, 1, num_bias_gates, hidden_size}, dtype, format::ldgo};
}
desc dst_layer_desc(dtype dtype) const {
return {{seq_length, mini_batch, hidden_size}, dtype, format::tnc};
}
desc dst_iter_desc(dtype dtype) const {
return {{1, 1, mini_batch, hidden_size}, dtype, format::ldnc};
}
desc dst_iter_c_desc(dtype dtype) const {
return {{1, 1, mini_batch, hidden_size}, dtype, format::ldnc};
}
};
static std::vector<int64_t> _hidden_size(const RNNParams& rnn) {
return {rnn.num_layers * rnn.num_directions, rnn.mini_batch, rnn.hidden_size};
}
template<bool is_single_direction>
std::vector<int64_t> _output_size(const RNNParams& rnn) {
auto output_channels = is_single_direction ? rnn.hidden_size
: rnn.hidden_size * rnn.num_directions;
return {rnn.seq_length, rnn.mini_batch, output_channels};
}
// MKLDNN GRU gate order is different from PyTorch's which requires gates shuffle
// (let rt,zt,nt be reset, update, new gates respectively)
//
// MKLDNN GRU weight_ih/weight_hh gates order: (zt, rt, nt)
// PyTorch GRU weight_ih/weight_hh gates order: (rt, zt, nt)
//
// MKLDNN GRU bias has 4 gates instead of 3
// (PyTorch GRU bias) (MKLDNN GRU bias)
//
// bias_ih bias_hh bias
// +-----+ +-----+ +---------+
// | rt1 | | rt2 | | zt1+zt2 |
// |-----| |-----| |---------|
// | zt1 | | zt2 | | rt1+rt2 |
// |-----| |-----| |---------|
// | nt1 | | nt2 | | nt1 |
// +-----+ +-----+ |---------|
// | nt2 |
// +---------+
//
static Tensor _shuffle_weight(const Tensor& weight, int64_t fn_mode) {
auto weight_t = weight.contiguous();
if (static_cast<ideep::rnn_kind>(fn_mode) == ideep::rnn_kind::GRU) {
std::vector<Tensor> gates = weight_t.chunk(3, /*gates*/0);
return at::cat({gates[1], gates[0], gates[2]}, /*gates*/0);
}
return weight_t;
}
static Tensor _shuffle_bias(const Tensor& bias_ih, const Tensor& bias_hh, int64_t fn_mode) {
if (static_cast<ideep::rnn_kind>(fn_mode) == ideep::rnn_kind::GRU) {
std::vector<Tensor> b1 = bias_ih.chunk(3, /*output_channels*/0);
std::vector<Tensor> b2 = bias_hh.chunk(3, /*output_channels*/0);
return at::cat({b1[1] + b2[1], b1[0] + b2[0], b1[2], b2[2]}, /*output_channels*/0);
}
return bias_ih + bias_hh;
}
std::tuple<Tensor, Tensor, Tensor, Tensor> mkldnn_rnn_layer(const Tensor& input,
const Tensor& w0,
const Tensor& w1,
const Tensor& w2,
const Tensor& w3,
const Tensor& hx_,
const Tensor& cx_,
bool reverse,
IntArrayRef batch_sizes,
int64_t mode,
int64_t hidden_size,
int64_t num_layers,
bool has_biases,
bool bidirectional,
bool batch_first,
bool train) {
RNNParams rnn(
input,
batch_sizes,
mode,
hidden_size,
num_layers,
bidirectional,
batch_first,
train);
auto output_size = _output_size</*is_single_direction*/ true>(rnn);
auto output = at::empty(output_size, input.options());
auto hy_ = at::empty(hx_.sizes(), hx_.options());
auto cy_ = at::empty(cx_.sizes(), cx_.options());
auto weight_ih = _shuffle_weight(w0, rnn.mode);
auto weight_hh = _shuffle_weight(w1, rnn.mode);
// Packed weight will be mkldnn layout while bias won't be packed
auto bias = has_biases
? _shuffle_bias(w2, w3, rnn.mode)
: at::zeros({rnn.num_bias_gates * rnn.hidden_size}, weight_ih.options().layout(at::Layout::Strided));
// per layer input size
int64_t input_size = input.size(2);
ideep::tensor w1_, w2_;
auto x = itensor_view_from_dense(
input,
rnn.src_layer_desc(input_size, get_mkldnn_dtype(input)));
auto hx = itensor_view_from_dense(
hx_, rnn.src_iter_desc(get_mkldnn_dtype(hx_)));
auto cx = itensor_view_from_dense(
cx_, rnn.src_iter_c_desc(get_mkldnn_dtype(cx_)));
auto b = itensor_view_from_dense(
bias, rnn.bias_desc(get_mkldnn_dtype(bias)));
auto y = itensor_view_from_dense(
output, rnn.dst_layer_desc(get_mkldnn_dtype(output)));
auto hy = itensor_view_from_dense(
hy_, rnn.dst_iter_desc(get_mkldnn_dtype(hy_)));
auto cy = itensor_view_from_dense(
cy_, rnn.dst_iter_c_desc(get_mkldnn_dtype(cy_)));
w1_ = weight_ih.is_mkldnn() ? itensor_from_tensor(weight_ih) : itensor_view_from_dense(weight_ih, rnn.weights_layer_desc(input_size, get_mkldnn_dtype(weight_ih)));
w2_ = weight_hh.is_mkldnn() ? itensor_from_tensor(weight_hh) : itensor_view_from_dense(weight_hh, rnn.weights_iter_desc(get_mkldnn_dtype(weight_hh)));
if (at::GradMode::is_enabled()) {
Tensor workspace = Tensor();
auto pd = ideep::lstm_forward_training::prepare(
x, hx, cx, w1_, w2_, b, y, hy, cy, reverse);
workspace = at::empty(pd.workspace_desc().get_size() / sizeof(uint8_t), input.options().dtype(at::kByte));
ideep::tensor mkldnn_workspace;
mkldnn_workspace.init(
pd.workspace_desc(), workspace.template data_ptr<uint8_t>());
ideep::lstm_forward_training::compute(
pd, x, hx, cx, w1_, w2_, b, mkldnn_workspace, y, hy, cy, reverse, ideep::prop_kind::forward_training);
return std::make_tuple(output, hy_, cy_, workspace);
} else {
ideep::lstm_forward_inference::compute(
x, hx, cx, w1_, w2_, b, y, hy, cy, reverse, ideep::prop_kind::forward_inference);
return std::make_tuple(output, hy_, cy_, Tensor());
}
}
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> mkldnn_rnn_layer_backward(
const Tensor& input,
const Tensor& weight0,
const Tensor& weight1,
const Tensor& weight2,
const Tensor& weight3,
const Tensor& hx_,
const Tensor& cx_tmp,
const Tensor& output,
const Tensor& hy_,
const Tensor& cy_,
const std::optional<Tensor>& grad_output_r_opt,
const std::optional<Tensor>& grad_hy_r_opt,
const std::optional<Tensor>& grad_cy_r_opt,
bool reverse,
int64_t mode,
int64_t hidden_size,
int64_t num_layers,
bool has_biases,
bool train,
bool bidirectional,
at::IntArrayRef batch_sizes,
bool batch_first,
const at::Tensor& workspace) {
const Tensor& grad_output_r = c10::value_or_else(grad_output_r_opt, [] {return Tensor();});
const Tensor& grad_hy_r = c10::value_or_else(grad_hy_r_opt, [] {return Tensor();});
const Tensor& grad_cy_r = c10::value_or_else(grad_cy_r_opt, [] {return Tensor();});
if (!grad_output_r.defined() && !grad_hy_r.defined() && !grad_cy_r.defined()) {
return std::make_tuple(Tensor(), Tensor(), Tensor(), Tensor(), Tensor(), Tensor(), Tensor());
}
auto grad_output = grad_output_r.defined() ? grad_output_r.contiguous() : at::zeros_like(output, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto grad_hy = grad_hy_r.defined() ? grad_hy_r.contiguous() : at::zeros_like(hx_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto grad_cy = cx_tmp.defined() ? (grad_cy_r.defined() ? grad_cy_r.contiguous() : at::zeros_like(cx_tmp, LEGACY_CONTIGUOUS_MEMORY_FORMAT)) : grad_cy_r.contiguous();
RNNParams rnn(
input,
batch_sizes,
mode,
hidden_size,
num_layers,
bidirectional,
batch_first,
train);
auto output_size = _output_size</*is_single_direction*/ true>(rnn);
auto weight_ih = _shuffle_weight(weight0, rnn.mode);
auto weight_hh = _shuffle_weight(weight1, rnn.mode);
auto bias = has_biases
? _shuffle_bias(weight2, weight3, rnn.mode)
: at::zeros({rnn.num_bias_gates * rnn.hidden_size}, weight_ih.options());
auto cx_ = hx_.storage().unsafeGetStorageImpl() == cx_tmp.storage().unsafeGetStorageImpl() ? at::clone(cx_tmp) : cx_tmp;
// per layer input size
int64_t input_size = input.size(2);
auto x = itensor_view_from_dense(
input,
rnn.src_layer_desc(input_size, get_mkldnn_dtype(input.scalar_type())));
auto hx = itensor_view_from_dense(
hx_, rnn.src_iter_desc(get_mkldnn_dtype(hx_.scalar_type())));
auto cx = itensor_view_from_dense(
cx_, rnn.src_iter_c_desc(get_mkldnn_dtype(cx_.scalar_type())));
auto w1 = itensor_view_from_dense(
weight_ih,
rnn.weights_layer_desc(
input_size, get_mkldnn_dtype(weight_ih.scalar_type())));
auto w2 = itensor_view_from_dense(
weight_hh,
rnn.weights_iter_desc(get_mkldnn_dtype(weight_hh.scalar_type())));
auto b = itensor_view_from_dense(
bias, rnn.bias_desc(get_mkldnn_dtype(bias.scalar_type())));
auto y = itensor_view_from_dense(
output, rnn.dst_layer_desc(get_mkldnn_dtype(output.scalar_type())));
auto hy = itensor_view_from_dense(
hy_, rnn.dst_iter_desc(get_mkldnn_dtype(hy_.scalar_type())));
auto cy = itensor_view_from_dense(
cy_, rnn.dst_iter_c_desc(get_mkldnn_dtype(cy_.scalar_type())));
// Create diff_* ATen tensor and corresponding ideep tensor as fp32
auto diff_x_ =
at::empty(input.sizes(), input.options().dtype(at::ScalarType::Float));
auto diff_hx_ =
at::empty(hx_.sizes(), hx_.options().dtype(at::ScalarType::Float));
auto diff_cx_ =
at::empty(cx_.sizes(), cx_.options().dtype(at::ScalarType::Float));
auto diff_w1_ = at::empty(
weight_ih.sizes(), weight_ih.options().dtype(at::ScalarType::Float));
auto diff_w2_ = at::empty(
weight_hh.sizes(), weight_hh.options().dtype(at::ScalarType::Float));
auto diff_b_ =
at::empty(bias.sizes(), bias.options().dtype(at::ScalarType::Float));
auto diff_x = itensor_view_from_dense(
diff_x_, rnn.src_layer_desc(input_size, ideep::tensor::data_type::f32));
auto diff_hx = itensor_view_from_dense(
diff_hx_, rnn.src_iter_desc(ideep::tensor::data_type::f32));
auto diff_cx = itensor_view_from_dense(
diff_cx_, rnn.src_iter_c_desc(ideep::tensor::data_type::f32));
auto diff_w1 = itensor_view_from_dense(
diff_w1_,
rnn.weights_layer_desc(input_size, ideep::tensor::data_type::f32));
auto diff_w2 = itensor_view_from_dense(
diff_w2_, rnn.weights_iter_desc(ideep::tensor::data_type::f32));
auto diff_b = itensor_view_from_dense(
diff_b_, rnn.bias_desc(ideep::tensor::data_type::f32));
// Convert grad_y, grad_hy, grad_cy to fp32 in non-fp32 backward
ideep::tensor diff_y, diff_hy, diff_cy;
at::Tensor grad_y_, grad_hy_, grad_cy_;
if (input.scalar_type() != at::ScalarType::Float) {
grad_y_ = at::empty(
grad_output.sizes(),
grad_output.options().dtype(at::ScalarType::Float));
grad_y_.copy_(grad_output);
grad_hy_ = at::empty(
grad_hy.sizes(), grad_hy.options().dtype(at::ScalarType::Float));
grad_hy_.copy_(grad_hy);
grad_cy_ = at::empty(
grad_cy.sizes(), grad_cy.options().dtype(at::ScalarType::Float));
grad_cy_.copy_(grad_cy);
diff_y = itensor_view_from_dense(
grad_y_, rnn.dst_layer_desc(get_mkldnn_dtype(grad_y_.scalar_type())));
diff_hy = itensor_view_from_dense(
grad_hy_, rnn.dst_iter_desc(get_mkldnn_dtype(grad_hy_.scalar_type())));
diff_cy = itensor_view_from_dense(
grad_cy_, rnn.dst_iter_desc(get_mkldnn_dtype(grad_cy_.scalar_type())));
} else {
diff_y = itensor_view_from_dense(
grad_output, rnn.dst_layer_desc(ideep::tensor::data_type::f32));
diff_hy = itensor_view_from_dense(
grad_hy, rnn.dst_iter_desc(ideep::tensor::data_type::f32));
diff_cy = itensor_view_from_dense(
grad_cy, rnn.dst_iter_desc(ideep::tensor::data_type::f32));
}
auto forward_hint = ideep::lstm_forward_training::prepare(x, hx, cx, w1, w2, b, y, hy, cy, reverse);
ideep::tensor mkldnn_workspace;
mkldnn_workspace.init(
forward_hint.workspace_desc(), workspace.template data_ptr<uint8_t>());
ideep::lstm_backward::compute(forward_hint, x, hx, cx, w1, w2, b, y, hy, cy, diff_y, diff_hy, diff_cy, mkldnn_workspace, diff_x, diff_hx, diff_cx, diff_w1, diff_w2, diff_b, reverse);
auto diff_b2_ = at::clone(diff_b_);
return std::make_tuple(diff_x_, diff_w1_, diff_w2_, diff_b_, diff_b2_, diff_hx_, diff_cx_);
}
// MKLDNN RNN integration notes:
// I. Memory Formats
// a. mkldnn will use plain formats for input, hx/cx, output, hy/cy
// and possibly use blocked formats for weights depending shape info.
// b. All mkldnn memorys are created (in plain format) as views on ATen tensor,
// the weight reorder(if any) is handed automatically inside ideep (mkldnn bridge)
//
// II. MKLDNN Primitive Mapping
// a. mkldnn rnn primitive doesn't support training with dropout or padded input sequence.
// b. here break a single RNN module into { num_layers * num_directions } mkldnn rnn primitives
// for future need to cover these feature gaps.
//
//TODO: a. training with dropout
// b. padded sequence input support
//
static std::tuple<Tensor, Tensor, Tensor> mkldnn_rnn(
const Tensor& input_, TensorList weight, int64_t weight_stride0,
const Tensor& hx_, const Tensor& cx_,
int64_t mode, int64_t hidden_size,
int64_t num_layers, bool has_biases, bool batch_first, double dropout_p,
bool train, bool bidirectional, IntArrayRef batch_sizes) {
TORCH_CHECK(batch_sizes.size() == 0, "mkldnn_rnn doesn't support packed input");
if (static_cast<ideep::rnn_kind>(mode) != ideep::rnn_kind::LSTM) {
TORCH_CHECK(!cx_.defined(), "mkldnn_rnn: illegal defined cx for non-LSTM RNN");
}
auto input = input_;
if (batch_first) {
input = input.transpose(0, 1);
}
input = input.contiguous();
auto hx = hx_.contiguous();
auto cx = cx_.contiguous();
MatrixRef<Tensor> weights{weight, static_cast<size_t>(weight_stride0)};
auto num_directions = bidirectional ? 2 : 1;
auto layer_input = input;
std::vector<at::Tensor> layer_output(num_directions);
std::vector<at::Tensor> layer_hy(num_layers * num_directions);
std::vector<at::Tensor> layer_cy(num_layers * num_directions);
for (const auto layer: c10::irange(num_layers)) {
for (const auto direction: c10::irange(num_directions)) {
const auto index = layer * num_directions + direction;
auto layer_weights = weights[index];
TORCH_CHECK(layer_weights.size() == 2 || layer_weights.size() == 4);
auto layer_hx = hx[index];
auto layer_cx = cx[index];
auto reverse = (direction > 0);
// bias won't be packed
auto outputs = at::mkldnn_rnn_layer(layer_input, layer_weights[0], layer_weights[1],
has_biases ? layer_weights[2] : at::zeros(layer_weights[0].sizes(), layer_weights[0].options().layout(at::Layout::Strided)),
has_biases ? layer_weights[3] : at::zeros(layer_weights[1].sizes(), layer_weights[1].options().layout(at::Layout::Strided)), layer_hx,
layer_cx, reverse, batch_sizes, mode, hidden_size, num_layers, has_biases, bidirectional, batch_first, train);
layer_output[direction] = std::get<0>(outputs);
layer_hy[index] = std::get<1>(outputs);
layer_cy[index] = std::get<2>(outputs);
}
layer_input = num_directions == 1 ? layer_output[0]
: at::cat(layer_output, /*output_channels*/-1);
if (dropout_p != 0 && train && layer < num_layers - 1) {
layer_input = at::dropout(layer_input, dropout_p, /*train=*/true);
}
}
auto output = layer_input;
auto hy = at::stack(layer_hy, 0);
auto cy = at::stack(layer_cy, 0);
if (batch_first) {
output = output.transpose(0, 1);
}
return std::make_tuple(output, hy, cy);
}
////////////////////////////////////////////////////////////////////////////////
//// MKLDNN dispatch for the generic RNN ops (at::lstm, at::gru, ...)
////////////////////////////////////////////////////////////////////////////////
namespace {
// Helpers for working with different hidden types.
std::tuple<Tensor, Tensor> unpack_hidden(const std::tuple<Tensor, Tensor>& hidden) {
return hidden;
}
template<typename hidden_type>
hidden_type pack_hidden(const Tensor& hx, const Tensor& cx) {
static_assert(std::is_same<hidden_type, void>::value, "pack_hidden not implemented for this type");
AT_ERROR("NOT IMPLEMENTED");
}
template<>
std::tuple<Tensor, Tensor> pack_hidden<std::tuple<Tensor, Tensor>>(const Tensor& hx, const Tensor& cx) {
return std::make_tuple(hx, cx);
}
template<typename hidden_type>
std::pair<Tensor, hidden_type> mkldnn_impl(
const Tensor& input, const hidden_type& hidden,
TensorList params, bool has_biases, ideep::rnn_kind mode,
int64_t num_layers, double dropout_p, bool train, bool bidirectional, bool batch_first) {
auto [hx, cx] = unpack_hidden(hidden);
int64_t hidden_size = hx.size(2);
auto mkldnn_output = mkldnn_rnn(
input, params, has_biases ? 4 : 2,
hx, cx, static_cast<int>(mode), hidden_size, num_layers, has_biases, batch_first, dropout_p,
train, bidirectional, /*batch_sizes*/{});
return {std::get<0>(mkldnn_output),
pack_hidden<hidden_type>(std::get<1>(mkldnn_output), std::get<2>(mkldnn_output))};
}
void lstm_mkldnn(Tensor& output, Tensor& hy, Tensor& cy,
const Tensor& input, TensorList hx, TensorList params, bool has_biases,
int64_t num_layers, double dropout_p, bool train, bool bidirectional, bool batch_first) {
auto result = mkldnn_impl(input, std::make_tuple(hx[0], hx[1]), params, has_biases,
ideep::rnn_kind::LSTM, num_layers, dropout_p, train, bidirectional, batch_first);
output = result.first;
hy = std::get<0>(result.second);
cy = std::get<1>(result.second);
}
} // anonymous namespace
REGISTER_ALL_CPU_DISPATCH(lstm_mkldnn_stub, &lstm_mkldnn);
} // namespace at::native
#endif // AT_MKLDNN_ENABLED