This repository has been archived by the owner on Jul 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Interpreter_correct.v
228 lines (212 loc) · 8.35 KB
/
Interpreter_correct.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
Require Import Streams.
Require Import List.
Require Import Syntax.
Require Import Equality.
Require Import Alphabet.
Require Grammar.
Require Automaton.
Require Interpreter.
Module Make(Import A:Automaton.T) (Import Inter:Interpreter.T A).
(** * Correctness of the interpreter **)
(** We prove that, in any case, if the interpreter accepts returning a
semantic value, then this is a semantic value of the input **)
Section Init.
Variable init:initstate.
(** [word_has_stack_semantics] relates a word with a state, stating that the
word is a concatenation of words that have the semantic values stored in
the stack. **)
Inductive word_has_stack_semantics:
forall (word:list token) (stack:stack), Prop :=
| Nil_stack_whss: word_has_stack_semantics [] []
| Cons_stack_whss:
forall (wordq:list token) (stackq:stack),
word_has_stack_semantics wordq stackq ->
forall (wordt:list token) (s:noninitstate)
(semantic_valuet:_),
inhabited (parse_tree (last_symb_of_non_init_state s) wordt semantic_valuet) ->
word_has_stack_semantics
(wordq++wordt) (existT noninitstate_type s semantic_valuet::stackq).
Lemma pop_invariant_converter:
forall A symbols_to_pop symbols_popped,
arrows_left (map symbol_semantic_type (rev_append symbols_to_pop symbols_popped)) A =
arrows_left (map symbol_semantic_type symbols_popped)
(arrows_right A (map symbol_semantic_type symbols_to_pop)).
Proof.
intros.
unfold arrows_right, arrows_left.
rewrite rev_append_rev, map_app, map_rev, fold_left_app.
apply f_equal.
rewrite <- fold_left_rev_right, rev_involutive.
reflexivity.
Qed.
(** [pop] preserves the invariant **)
Lemma pop_invariant:
forall (symbols_to_pop symbols_popped:list symbol)
(stack_cur:stack)
(A:Type)
(action:arrows_left (map symbol_semantic_type (rev_append symbols_to_pop symbols_popped)) A),
forall word_stack word_popped,
forall sem_popped,
word_has_stack_semantics word_stack stack_cur ->
inhabited (parse_tree_list symbols_popped word_popped sem_popped) ->
let action' := eq_rect _ (fun x=>x) action _ (pop_invariant_converter _ _ _) in
match pop symbols_to_pop stack_cur (uncurry action' sem_popped) with
| OK (stack_new, sem) =>
exists word1res word2res sem_full,
(word_stack = word1res ++ word2res)%list /\
word_has_stack_semantics word1res stack_new /\
sem = uncurry action sem_full /\
inhabited (
parse_tree_list (rev_append symbols_to_pop symbols_popped) (word2res++word_popped) sem_full)
| Err => True
end.
Proof.
induction symbols_to_pop; intros; unfold pop; fold pop.
exists word_stack, ([]:list token), sem_popped; intuition.
f_equal.
apply JMeq_eq, JMeq_eqrect with (P:=(fun x => x)).
destruct stack_cur as [|[]]; eauto.
destruct (compare_eqdec (last_symb_of_non_init_state x) a); eauto.
destruct e; simpl.
dependent destruction H.
destruct H0, H1. apply (Cons_ptl X), inhabits in X0.
specialize (IHsymbols_to_pop _ _ _ action0 _ _ _ H X0).
match goal with
IHsymbols_to_pop:match ?p1 with Err => _ | OK _ => _ end |- match ?p2 with Err => _ | OK _ => _ end =>
replace p2 with p1; [destruct p1 as [|[]]|]; intuition
end.
destruct IHsymbols_to_pop as [word1res [word2res [sem_full []]]]; intuition; subst.
exists word1res.
eexists.
exists sem_full.
intuition.
rewrite <- app_assoc; assumption.
simpl; f_equal; f_equal.
apply JMeq_eq.
etransitivity.
apply JMeq_eqrect with (P:=(fun x => x)).
symmetry.
apply JMeq_eqrect with (P:=(fun x => x)).
Qed.
(** [reduce_step] preserves the invariant **)
Lemma reduce_step_invariant (stack:stack) (prod:production):
forall word buffer, word_has_stack_semantics word stack ->
match reduce_step init stack prod buffer with
| OK (Accept_sr sem buffer_new) =>
buffer = buffer_new /\
inhabited (parse_tree (NT (start_nt init)) word sem)
| OK (Progress_sr stack_new buffer_new) =>
buffer = buffer_new /\
word_has_stack_semantics word stack_new
| Err | OK Fail_sr => True
end.
Proof with eauto.
intros.
unfold reduce_step.
pose proof (pop_invariant (prod_rhs_rev prod) [] stack (symbol_semantic_type (NT (prod_lhs prod)))).
revert H0.
generalize (pop_invariant_converter (symbol_semantic_type (NT (prod_lhs prod))) (prod_rhs_rev prod) []).
rewrite <- rev_alt.
intros.
specialize (H0 (prod_action prod) _ [] () H (inhabits Nil_ptl)).
match goal with H0:let action' := ?a in _ |- _ => replace a with (prod_action' prod) in H0 end.
simpl in H0.
destruct (pop (prod_rhs_rev prod) stack (prod_action' prod)) as [|[]]; intuition.
destruct H0 as [word1res [word2res [sem_full]]]; intuition.
destruct H4; apply Non_terminal_pt, inhabits in X.
match goal with X:inhabited (parse_tree _ _ ?u) |- _ => replace u with s0 in X end.
clear sem_full H2.
simpl; destruct (goto_table (state_of_stack init s) (prod_lhs prod)) as [[]|]; intuition; subst.
rewrite app_nil_r in X; revert s0 X; rewrite e0; intro; simpl.
constructor...
destruct s; intuition.
destruct (compare_eqdec (prod_lhs prod) (start_nt init)); intuition.
rewrite app_nil_r in X.
rewrite <- e0.
inversion H0.
destruct X; constructor...
apply JMeq_eq.
etransitivity.
apply JMeq_eqrect with (P:=(fun x => x)).
symmetry.
apply JMeq_eqrect with (P:=(fun x => x)).
Qed.
(** [step] preserves the invariant **)
Lemma step_invariant (stack:stack) (buffer:Stream token):
forall buffer_tmp,
(exists word_old,
buffer = word_old ++ buffer_tmp /\
word_has_stack_semantics word_old stack) ->
match step init stack buffer_tmp with
| OK (Accept_sr sem buffer_new) =>
exists word_new,
buffer = word_new ++ buffer_new /\
inhabited (parse_tree (NT (start_nt init)) word_new sem)
| OK (Progress_sr stack_new buffer_new) =>
exists word_new,
buffer = word_new ++ buffer_new /\
word_has_stack_semantics word_new stack_new
| Err | OK Fail_sr => True
end.
Proof with eauto.
intros.
destruct H, H.
unfold step.
destruct (action_table (state_of_stack init stack)).
pose proof (reduce_step_invariant stack p x buffer_tmp).
destruct (reduce_step init stack p buffer_tmp) as [|[]]; intuition; subst...
destruct buffer_tmp.
unfold Streams.hd.
destruct t.
destruct (l x0); intuition.
exists (x ++ [existT (fun t => symbol_semantic_type (T t)) x0 s])%list.
split.
now rewrite <- app_str_app_assoc; intuition.
apply Cons_stack_whss; intuition.
destruct e; simpl.
now exact (inhabits (Terminal_pt _ _)).
match goal with |- (match reduce_step init stack p ?buff with Err => _ | OK _ => _ end) =>
pose proof (reduce_step_invariant stack p x buff);
destruct (reduce_step init stack p buff) as [|[]]; intuition; subst
end...
Qed.
(** The interpreter is correct : if it returns a semantic value, then the input
word has this semantic value.
**)
Theorem parse_correct buffer n_steps:
match parse init buffer n_steps with
| OK (Parsed_pr sem buffer_new) =>
exists word_new,
buffer = word_new ++ buffer_new /\
inhabited (parse_tree (NT (start_nt init)) word_new sem)
| _ => True
end.
Proof.
unfold parse.
assert (exists w, buffer = w ++ buffer /\ word_has_stack_semantics w []).
exists ([]:list token); intuition.
now apply Nil_stack_whss.
revert H.
generalize ([]:stack), buffer at 2 3.
induction n_steps; simpl; intuition.
pose proof (step_invariant _ _ _ H).
destruct (step init s buffer0); simpl; intuition.
destruct s0; intuition.
apply IHn_steps; intuition.
Qed.
End Init.
End Make.