forked from uclinfectionimmunity/Decombinator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShortReadDecombinator.py
319 lines (228 loc) · 12.8 KB
/
ShortReadDecombinator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
########################################################################################################################
# Short read decombinator
#
########################################################################################################################
from __future__ import division
from Bio import SeqIO
import string
import time
from acora import AcoraBuilder
import math
from Bio import pairwise2
########################################################################################################################
########################################################################################################################
def setup(vregions_file, jregions_file):
v_end_length = 40 # how many nts at the end of the V region to consider
j_start_length = 40 # how many nts at the start of the J region to consider
handle = open(vregions_file, 'r')
v_list = list(SeqIO.parse(handle, 'fasta'))
handle.close()
v_genes = [str(string.upper(v.seq)) for v in v_list]
v_genes_cut = [v[-v_end_length:] for v in v_genes]
all_v_substrings = []
for v in v_genes_cut:
all_v_substrings.append([v[i:i+n] for n in range(4, len(v)+1) for i in range(len(v)-(n-1))])
t0 = time.time()
v_keyword_tries = []
for v_substrings in all_v_substrings:
v_builder = AcoraBuilder()
for i in range(len(v_substrings)):
v_builder.add(v_substrings[i])
v_keyword_tries.append(v_builder.build())
print 'V keyword tries built in', round(time.time() - t0, 2), 'seconds'
handle = open(jregions_file, 'r')
j_list = list(SeqIO.parse(handle, 'fasta'))
handle.close()
j_genes = [str(string.upper(j.seq)) for j in j_list]
j_genes_cut = [j[:j_start_length] for j in j_genes]
all_j_substrings = []
for j in j_genes_cut:
all_j_substrings.append([j[i:i+n] for n in range(4, len(j)+1) for i in range(len(j)-(n-1))])
t0 = time.time()
j_keyword_tries = []
for j_substrings in all_j_substrings:
j_builder = AcoraBuilder()
for i in range(len(j_substrings)):
j_builder.add(j_substrings[i])
j_keyword_tries.append(j_builder.build())
print 'J keyword tries built in', round(time.time() - t0, 2), 'seconds'
return v_keyword_tries, j_keyword_tries, v_genes, j_genes
########################################################################################################################
########################################################################################################################
def analyse_file(infile, outpath, fileid, v_keyword_tries, j_keyword_tries, v_genes, j_genes, parameters):
print 'Classifying sequences in', infile, 'using parameter set', parameters
outfile = outpath + fileid + '_beta.txt'
outhandle = open(outfile, 'w')
t0 = time.time()
record_count = 0
assigned_count = 0
inhandle = open(infile, 'r')
for record in SeqIO.parse(inhandle, 'fastq'):
assigned_j = None
assigned_v = None
v_deletions = None
j_deletions = None
insert_nt = None
record_count += 1
if record_count % 1000 == 0:
print record_count
# print 'assigning a J gene'
j_substrings_by_gene = find_all_matches(record, j_keyword_tries)
assigned_j = assign_gene(record, j_substrings_by_gene, j_genes, parameters)
# print assigned_j
if not assigned_j:
continue # move to next record in the file
# print 'assigning a V gene'
v_substrings_by_gene = find_all_matches(record, v_keyword_tries)
assigned_v = assign_gene(record, v_substrings_by_gene, v_genes, parameters)
# print assigned_v
if not assigned_v:
continue # move to the next record in the file
# print 'finding V deletions'
v_deletions = find_v_deletions(v_substrings_by_gene, assigned_v, v_genes)
# print v_deletions
# print 'finding J deletions'
j_deletions = find_j_deletions(j_substrings_by_gene, assigned_j, j_genes)
# print j_deletions
# print 'finding inserted nucleotides'
insert_nt = find_insert_nts(record, v_substrings_by_gene, assigned_v, j_substrings_by_gene, assigned_j)
# print insert_nt
# print 'writing dcr to outfile'
dcr = ','.join([str(assigned_v), str(assigned_j), str(v_deletions), str(j_deletions), insert_nt])
print >> outhandle, dcr
assigned_count += 1
inhandle.close()
outhandle.close()
print '-----------------------------------------------------------------------'
print '{0:,}'.format(record_count), 'sequence reads analysed in', round(time.time()-t0, 2), 'seconds'
print '{0:,}'.format(assigned_count), 'successfully assigned a classifier'
print '-----------------------------------------------------------------------'
########################################################################################################################
########################################################################################################################
def find_all_matches(record, keyword_tries):
substrings_found_by_gene = [trie.findall(str(record.seq)) for trie in keyword_tries]
return substrings_found_by_gene
########################################################################################################################
########################################################################################################################
def assign_gene(record, substrings_found_by_gene, genes, parameters):
if not substrings_found_by_gene:
assigned_gene = None
return assigned_gene
else:
# attempt to match by longest substring
assigned_gene = assign_by_longest_substring(substrings_found_by_gene, parameters)
if assigned_gene:
return assigned_gene
else:
# attempt to match by scoring
assigned_gene = assign_by_gene_scores(substrings_found_by_gene, parameters)
if assigned_gene == 'NA':
return None
elif assigned_gene:
return assigned_gene
else:
# do pairwise alignment on two top scoring genes
assigned_gene = assign_by_pairwise(substrings_found_by_gene, record, genes)
return assigned_gene
########################################################################################################################
########################################################################################################################
def assign_by_longest_substring(substrings_found_by_gene, parameters):
"""
Checks whether the gene with the longest substring match is adequate to be assigned.
Returns matched gene if adequate, None otherwise
"""
# print 'attempting assignment by longest substring'
match_length_threshold = parameters[0]
match_length_differential = parameters[0]
longest_substring_by_gene = []
for matches in substrings_found_by_gene:
lengths = [len(x) for x in matches]
longest_substring_by_gene.append(max(lengths))
if max(longest_substring_by_gene) < match_length_threshold:
return None
elif sorted(longest_substring_by_gene, reverse=True)[0] \
< sorted(longest_substring_by_gene, reverse=True)[1] + match_length_differential:
return None
else:
assigned_gene = longest_substring_by_gene.index(max(longest_substring_by_gene))
return assigned_gene
########################################################################################################################
########################################################################################################################
def assign_by_gene_scores(substrings_found_by_gene, parameters):
"""
Attempts to match a gene to the sequence read by scoring each gene according to match lengths
Returns gene index if matched successfully
None if cannot match successfully
'NA' if this read should be discarded due to all scores being too low
"""
# print 'attempting assignment by scoring'
score_threshold = parameters[2]
score_differential = parameters[3]
gene_scores = []
for gene_matches in substrings_found_by_gene:
gene_scores.append(sum([math.e**len(x[0]) for x in gene_matches]))
if max(gene_scores) < score_threshold:
assigned_gene = 'NA'
return assigned_gene
elif sorted(gene_scores, reverse=True)[0] < sorted(gene_scores, reverse=True)[1] * score_differential:
assigned_gene = None
return assigned_gene
else:
assigned_gene = gene_scores.index(max(gene_scores))
return assigned_gene
########################################################################################################################
########################################################################################################################
def assign_by_pairwise(substrings_found_by_gene, record, genes):
# print 'attempting assignment by pairwise alignment'
gene_scores = []
for gene_matches in substrings_found_by_gene:
gene_scores.append(sum([math.e**len(x[0]) for x in gene_matches]))
gene_indices_to_test = [i for i, x in enumerate(gene_scores) if x in sorted(gene_scores, reverse=True)[:2]]
pw_scores = []
for i in gene_indices_to_test:
pw_scores.append(max([a[2] for a in pairwise2.align.globalxs(str(record.seq)[3:], genes[i], -0.5, -0.5)]))
assigned_gene = gene_indices_to_test[pw_scores.index(max(pw_scores))]
return assigned_gene
########################################################################################################################
########################################################################################################################
def find_v_deletions(substrings_found_by_gene, assigned_gene, genes):
relevant_substrings = substrings_found_by_gene[assigned_gene]
maximum_matched_length = max([len(x[0]) for x in relevant_substrings])
relevant_match = [x[0] for x in relevant_substrings if len(x[0]) == maximum_matched_length][0]
relevant_gene = genes[assigned_gene]
position = string.find(relevant_gene, relevant_match)
v_deletions = len(relevant_gene) - (position + len(relevant_match))
return v_deletions
########################################################################################################################
########################################################################################################################
def find_j_deletions(substrings_found_by_gene, assigned_gene, genes):
relevant_substrings = substrings_found_by_gene[assigned_gene]
maximum_matched_length = max([len(x[0]) for x in relevant_substrings])
relevant_match = [x[0] for x in relevant_substrings if len(x[0]) == maximum_matched_length][0]
relevant_gene = genes[assigned_gene]
position = string.find(relevant_gene, relevant_match)
j_deletions = position
return j_deletions
#######################################################################################################################
########################################################################################################################
def find_insert_nts(record, v_substrings_by_gene, v_assigned, j_substrings_by_gene, j_assigned):
v_max_match_length = max([len(x[0]) for x in v_substrings_by_gene[v_assigned]])
v_longest_match = [x[0] for x in v_substrings_by_gene[v_assigned] if len(x[0]) == v_max_match_length][0]
j_max_match_length = max([len(x[0]) for x in j_substrings_by_gene[j_assigned]])
j_longest_match = [x[0] for x in j_substrings_by_gene[j_assigned] if len(x[0]) == j_max_match_length][0]
v_end_position = string.find(str(record.seq), v_longest_match) + len(v_longest_match)
j_start_position = string.find(str(record.seq), j_longest_match)
insert_nts = str(record.seq)[v_end_position: j_start_position]
return insert_nts
#######################################################################################################################
########################################################################################################################
if __name__ == '__main__':
vfile = '/home/niclas/Documents/decombinator-v2.0/human_TRBV_region.fasta'
jfile = '/home/niclas/Documents/decombinator-v2.0/human_TRBJ_region.fasta'
v_key, j_key, v_regions, j_regions = setup(vfile, jfile)
infile = 'testseqs.fastq'
outpath = '/home/niclas/Documents/decombinator-v2.0/'
fileid = 'MyShortReadAnalysis'
param_set = [10, 2, 1400, 1.05]
analyse_file(infile, outpath, fileid, v_key, j_key, v_regions, j_regions, param_set)
########################################################################################################################